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Chapter 1  Background and introduction 

 

In clinical research, biostatisticians are deeply involved from the design stage 

of the trial, and they propose and advise on the study endpoint, statistical 

analysis plan, the sample size, and so on. Among various types of design for 

clinical research, particularly in phase III comparative clinical trials to 

confirm the efficacy and safety of new pharmaceutical products, ingenuity for 

clinical trial design is crucial to place the products with social benefits on the 

market as soon as possible. Furthermore, statistical analysis methods and 

study endpoints adopted in the trial should be reasonable and valid in the 

light of the characteristics of the targeted therapy.  

 

Recently, various types of study designs have been proposed to overcome the 

complicated situations encountered in clinical trials. This thesis focuses on 

two subjects related to statistical considerations on the study design and 

analysis method in comparative clinical trials.  

In Chapter 2, I propose a new monitoring tool for interim analysis. Interim 

analyses are often planned in randomized clinical trials for possible early trial 

termination to claim superiority or futility of a new therapy. The proposed 

blinded data monitoring tool enables investigators to predict whether they 

observe such an unblinded interim analysis results that support early 

termination of the trial. Investigators may skip some of the planned interim 
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analyses if early termination is unlikely. Here, this thesis specifically focused 

on blinded, randomized-controlled studies to compare binary endpoints of a 

new treatment with a control. Extensive simulation studies are conducted to 

assess the impact of the implementation of our tool on the size, power, 

expected number of interim analyses, and bias in the treatment effect.  

Then in Chapter 3, I discuss issues of conventional cancer trial design and 

analysis and present alternatives to the hazard ratio (HR) using a recent 

immunotherapy study, i.e., the restricted mean survival time (RMST). In a 

comparative cancer clinical study with progression-free survival (PFS) or 

overall survival (OS) as the endpoint, the HR is routinely utilized to design 

the study and then to estimate the treatment effect at the end of the study. 

The clinical interpretation of HR may not be straightforward, especially when 

the underlying model assumption is not valid.  A robust procedure for study 

design and analysis that enables clinically meaningful interpretation of trial 

results is warranted. This thesis first discuss issues of using HR and present 

RMST as a summary measure of patients’ survival profile over time. This 

thesis then shows how to use the difference/ratio in RMST between two 

groups as an alternative for designing and analyzing a cancer clinical study 

via an immunotherapy study as an illustrative example.  

Finally, concluding remarks are given in Chapter 4.  
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Chapter 2 Decision on performing interim 

analysis for comparative clinical trials 

 

2.1 Introduction 

In randomized-controlled trials, interim analyses are often planned to review 

the efficacy or safety of the therapeutic interventions. Early termination of 

the trial may occur due to evidence of superiority or futility of the new therapy 

based on the interim analysis. To conduct interim analyses, we need to access 

the data prior to the completion of the trial. Particularly for blinded studies, 

interim analysis requires unblinding of the treatment allocation and 

conducting a formal between-group comparison1,2. Although unblinded data 

provide complete information of the observed data, blinded data also contain 

information about the treatment difference between the groups. For instance, 

when the observed response rate in the pooled sample is very low at the time 

of the interim analysis, we know the response rates in both groups are very 

low. Therefore, there is little chance a significant difference between the 

groups would be observed and, consequently, a formal comparison is a 

wasteful expenditure of alpha. Even when response rates are not that small, 

if the control rate can be reasonably estimated based on previous studies, the 

blinded data yields a decent estimate of the treatment difference. 

There are several data monitoring tools3-5 that use blinded data originating 

in the Bayesian approach for safety monitoring in single arm studies proposed 
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by Thall and Simon6. For example, Ball3 focused on the adverse event rate in 

the pooled sample and proposed a decision rule based on the posterior 

distribution of it using the Bayesian approach. On the other hand, our focus 

in this paper is a blinded data monitoring tool predicting the result of a formal 

unblinded interim analysis for superiority or futility of a new therapy. The 

proposed tool works with the hypothesis testing approach. Specifically, we 

assume that the alpha spending function approach7 is used as a stopping 

guideline for superiority in the formal interim analysis. For futility, we 

assume that the result of stochastic curtailment method is used as a guideline 

of early stopping8. We performed extensive numerical studies to assess the 

impact of the implementation of the data monitoring tool on the type I error 

rate, power, expected sample size, expected number of interim analyses to be 

performed and bias in the treatment effect for both superiority and futility. 

We illustrated the practical application of our tool, using data from a clinical 

trial conducted by the ECOG-ACRIN Cancer Research Group. With our tool, 

investigators may skip some of the planned interim analyses when the result 

of an interim analysis at that time point is unlikely to support early 

termination of the trial for superiority or futility. Therefore, this tool could 

ultimately avoid unnecessary spending of study resources while maintaining 

scientific integrity of the trial. 

  



6 

 

2.2 Blinded data monitoring tool 

In this paper, we specifically focus on randomized controlled trials comparing 

binary endpoints, namely response rates, between a new therapy and a 

control. In the trial, interim analyses are planned for early termination for 

superiority or futility or both. 

 

2.2.1 Typical procedure of interim analysis 

Usually, the interim analysis is implemented at the time when the pre-

planned information fraction is reached. For a binary outcome, the total 

information will be defined as the planned total sample size. Assume that, 

during the accumulating the preset sample size M, there are N (≤M) 

participants and T (≤N) responders in the two arms at the time of the interim 

analysis. Let (𝑇1, 𝑇0) denote the numbers of responders in the arm of the new 

therapy and control respectively, and then 𝑇 =  𝑇1 + 𝑇0. When unblinding the 

data, we can observe (𝑇1, 𝑇0), and formal comparison would be implemented. 

Depending on the resulting test statistic, or the corresponding p-value or 

conditional power, we decide whether to stop or continue the trial. 

 

2.2.2 Blinded data monitoring tool 

Before breaking the blinded treatment assignment code, we may monitor 

(𝑁, 𝑇) from the blinded data. Assume that each 𝑇1 and 𝑇0 follows a 

binomial distribution with a parameter 𝑝1 for the new therapy and 𝑝0 for 

the control therapy, respectively. The probability mass function of 𝑇, 𝑃𝑟(𝑇 =

𝑡), can be expressed with a mixture of the aforementioned two binomials. 

Given the allocation ratio during the study 𝑞: (1 − 𝑞) for the new therapy 

and control respectively, where 𝑞 ∈ (0,1), 𝑃𝑟(𝑇 = 𝑡) is expressed that 
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𝑃𝑟(𝑇 = 𝑡)  = (
𝑁
𝑡

) {𝑞𝑝1 + (1 − 𝑞)𝑝0}𝑡{𝑞(1 − 𝑝1) + (1 − 𝑞)(1 − 𝑝0)}𝑁−𝑡. 

With the blinded treatment allocation, if we have enough certainty about 𝑝0 

and if the allocation ratio is close to 𝑞, we would be able to predict the 

response rate of the new therapy 𝑝1. Specifically, if 𝑝0 is a known value, the 

maximum likelihood estimator of 𝑝1 is obtained by 

𝑝1̂ =
𝑇 − 𝑁(1 − 𝑞)𝑝0

𝑁𝑞
. 

Then the standardized test statistics for testing the null hypothesis 𝐻0: 𝑝1 =

𝑝0 is given by 𝑍𝑏 = (𝑝1̂  − 𝑝0)/√Var̂(𝑝1̂), where Var̂(𝑝1̂) = 𝑁𝑟̂(1 −  𝑟̂)/(𝑁𝑞)2 

and 𝑟̂ = 𝑞𝑝1̂ + (1 − 𝑞)𝑝0. Utilizing the observed 𝑍𝑏  at the interim analysis 

point, we can predict whether or not the unblinded interim analysis result 

will meet the stopping criteria for superiority or futility. For superiority, one 

can then obtain the threshold values of the total number of responders 𝑇 

with respect to each number of subjects 𝑁, with which the 𝑝-value of the test 

would meet the pre-specified stopping criteria corresponding to the 

information time at the interim analysis. For futility, one might use a 

conditional probability as criteria for stopping. 

 

2.2.3 Illustrative example 

To illustrate the aforementioned decision criteria, we consider a specific 

numerical example of a randomized controlled trial comparing response 

rates between the new and the control therapy. The accrual goal is 135 

patients and the mixture proportion of allocation is 𝑞: (1 − 𝑞) =
2

3
∶

1

3
 for the 

new therapy and the control, respectively. 
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First, we consider the case for interim analysis expecting early termination 

only for superiority and consuming type I error rate 𝛼 = 0.01 at the interim 

analysis. Under this scenario, the solid curves in Figure 1 show the 

thresholds of 𝑁 and 𝑇 with various values of 𝑝0. For example, the blue 

solid curve corresponds the case that 𝑝0 = 0.4. Using the observed (𝑁, 𝑇) 

with blindness maintained, these curves can be a reference to predict how 

likely the interim analysis result would meet the stopping criteria, if 

conducted. Specifically, in this example, when the observed (𝑁, 𝑇) is above 

the blue curve, we can expect that the result of the interim analysis will 

support early stopping for superiority for the new therapy. Therefore, if we 

think that 𝑝0 is very likely to be 0.4, we would conclude that an interim 

analysis should not be missed at this point. 

Next, we consider the case of early termination for futility based on the 

conditional power less than 0.2. The dashed lines in Figure 1 show the 

corresponding N-T curves for futility with various 𝑝0′𝑠. Again, consider the 

case that 𝑝0 = 0.4. The observed (𝑁, 𝑇) below the blue dashed curve 

indicates the conditional power will likely be below 0.2. Thus, if we are 

confident with a 𝑝0 = 0.4, we would determine the interim analysis should 

not be missed for potential futility stop. On the other hand, if the observed 

(𝑁, 𝑇) is above the blue dashed curve, it may be an option to skip the 

scheduled interim analysis, if there are no other concerns on the study. 

This tool can also be used for the cases that both superiority and futility 

stoppings are of interest. In those cases, we will use both solid and dashed 

curves in Figure 1. When the observed (𝑁, 𝑇) is in between solid and 
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dashed lines, the interim analysis result will likely not meet stopping 

criteria for either superiority or futility. We may skip performing the interim 

analysis and continue the trial, unless there are other concerns in the study. 

In this manner, the proposed blinded monitoring process is helpful for 

identifying whether it is a good time to conduct interim analysis, preserving 

the integrity of the study. Appendix 1 provides the computer programs to 

generate N-T plots with a documented example. 

 

Figure 1. N-T plot with 𝐩𝟎 = 0.8, 0.6, 0.4 and 0.2 for early stopping for superiority and 

futility. 
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2.3 Simulation studies 

We performed extensive numerical studies to assess the impact of the 

implementation of the proposed blinded data monitoring tool with respect to 

a randomized controlled design using 2:1 allocation (new therapy : control) 

and comparison of a binary outcome. We assume that the investigators plan 

to do one interim analysis when the outcome of 60 patients are available 

among the planned 135 patients. The overall type I error rate is set to 0.05. 

We consider that 0.01 of the alpha would be spent at the interim analysis, 

and then the critical p-value for the second analysis is derived to be 0.0446 

by the Hybittle-Peto method [9,10]. The true response rates of the new 

therapy 𝑝1 were set to 0.40, 0.50, 0.60, 0.65, 0.70 and 0.80, and the true 

response rate of the control group 𝑝0 was set to 0.40. The binary outcomes 

are generated from the binomial distribution with the success probability 

 𝑝1 for the new therapy and 𝑝0 for the control arm, respectively. Iterating 

10000 times, we assessed the overall type I error rate, power, expected 

sample size, the probability of conducting the interim analysis, the 

probability of stopping the trial at the interim analysis, and the bias of the 

treatment effect. 

In these simulations, three patterns of early termination criteria were 

evaluated--- 1) only for superiority, 2) only for futility, and 3) both for 

superiority and futility. Within each pattern, four scenarios as outlined 

below were considered. 

 First scenario (Without using our tool) 

As a conventional procedure of randomized controlled trials, an interim 
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analysis is conducted at a pre-specified information time. If the result of the 

interim analysis is significant, we stop the study for superiority of the new 

therapy. Otherwise, the trial will be continued until full accrual, and the 

second analysis conducted with the planned sample size. 

 Second scenario (Using our tool with a correct 𝑝0) 

At the pre-specified time point in the aforementioned scenario, the decision 

of whether or not to conduct an interim analysis is made by the proposed 

blinded data monitoring tool with a correctly specified parameter for the 

control arm. When our tool suggests an interim analysis should be 

conducted, the interim data will be unblinded and the interim analysis will 

be performed as in the first scenario. On the other hand, when our tool 

suggests skipping the interim analysis, the data will be analyzed only at the 

end of the trial. In the latter case, since we haven’t spent alpha for the 

interim analysis, the nominal level of the type I error rate is used at the 

final analysis. 

 Other scenarios (Using our tool with mis-specified 𝑝0) 

We take the same procedure as described in the second scenario, but consider 

the case when 𝑝0  is misspecified when creating N-T plot. Specifically, we 

consider a case where we underestimate 𝑝0  (i.e., 𝑝0 = 0.30  in the third 

scenario ‘lower’ 𝑝0 ) and a case where we overestimate 𝑝0 (i.e, 𝑝0 =  0.50 in 

the fourth scenario). 

 

2.3.1 For case of early termination for superiority 

Table 1 presents the simulation results in the case of early termination for 
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superiority at the one interim analysis which is done with 60 patients. In 

this table, we report power or size (overall type I error rate), the expected 

sample size during the study (E[M]), the probability to conduct an interim 

analysis (IA), the probability to terminate the trial at the interim analysis 

for superiority of the new therapy (Sig.IA), and the proportion of Sig.IA/IA, 

among 10000 sets of samples. Note that the expected sample size would also 

be an indicator of the expected study duration. When the expected sample 

size is close to 135, the study would be continued until the time of the final 

analysis. We also evaluated the bias of the treatment effect via E[𝑝1̂ − 𝑝0̂] −

(𝑝1 − 𝑝0). Scenario 1-1 shows the results of the case using the conventional 

strategy and the other three scenarios show the results using the proposed 

blinded data monitoring tool under various conditions of 𝑝0. 
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2.3.2 For case of early termination for futility 

In this setting, we consider early stopping for futility, instead of superiority. 

Specifically, at the planned interim analysis time point, we calculate the 

conditional probability. If it is below 0.2, we stop the trial. The incorporation 

of a futility stopping rule affects the overall type I error, but we do not adjust 

for it in this numerical study. Therefore, the critical p-value at the final 

analysis is 0.05. In Table 2, we report the probability to terminate the trial at 

the interim analysis for futility of the new therapy (Fut.IA), and the 

proportion of Fut.IA/IA, in addition to power or size (overall type I error rate), 

the expected sample size during the study E[M], IA and the bias of the 

treatment effect under each four data monitoring scenario. 
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2.3.3 For case of early termination for superiority and futility 

We now consider the case with both superiority and futility stopping rules. 

Specifically, at the interim analysis, we will stop the trial for superiority if the 

observed p-value is less than 0.01, or for futility if the conditional probability 

is less than 0.2. Table 3 gives the results of the four data monitoring scenarios 

including the parameters power and size, E[M], IA, Sig.IA, Fut.IA, the 

proportion of Sig.IA + Fut.IA to IA (Sig.Fut.IA/IA) and the bias of the 

treatment effect. 
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The resulting three tables indicate that when the effect of the treatment 

difference is small, the chance to conduct interim analysis for superiority 

becomes dramatically reduced, and that for futility becomes increased by 

using our blinded-data monitoring tool. Furthermore, the trends of the 

probability to terminate the trial at the interim analysis based on 

superiority and/or futility conducted are not dependent the blinded or 

unblinded data monitoring strategies. Generally, the treatment effect simply 

estimated from the study data will be biased, when a stopping boundary is 

imposed. We find that the bias of the estimated treatment effect will be 

reduced by using the proposed blinded data monitoring tool, compared to 

the scenario when the interim analysis is precisely conducted. Interestingly, 

even in the cases that the anticipated rates on the outcome in the control 

therapy are not close to the truth, similar operational characteristics are 

observed. Therefore, using our blinded data monitoring tool, we can reduce 

the chance to conduct unnecessary interim analysis and wasting study 

resources, especially when there is little benefit for early stopping in the 

trial. 

Notably, there is no gain in power by using the proposed blinded data 

monitoring tool, compared with the conventional method. Also, using our 

blinded data monitoring tool, the expected sample size will be slightly 

increased, compared to the conventional methods. This is because the interim 

analysis that meets the stopping criteria is sometimes skipped and the final 

analysis is then conducted with the whole planned sample size. We also find 

that, when the anticipated response rate on the outcome in the control 
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therapy to create N-T plot for early stopping for superiority is underestimated 

(Scenario 1-3 in Table 1), the impact on the sample size is fairly small. On the 

other hand, when we overestimate the rate on the outcome in the control for 

early stopping for superiority (Scenario 1-4 in Table 1), the expected sample 

size is increased because most of the planned interim analyses are skipped 

and those studies are continued until the planned end. 
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2.4 Application 

We illustrate how to utilize our tool using the data from newly diagnosed 

multiple myeloma patients who participated in a clinical trial conducted by 

ECOG-ACRIN11. The primary objective of this trial was to evaluate the 4-

month response rates of the combination therapy with thalidomide and 

dexamethasone (therapy A), compared with the standard therapy with 

dexamethasone alone (therapy B). A total of 199 eligible patients were 

randomized to therapy A (n=99) and therapy B (n=100). The study showed 

that the response rate in the therapy A group is significantly higher than 

therapy B. Note that this study was designed, anticipating that the 4-month 

response rate in therapy B group is 60%. However, the observed response 

rate in therapy B was 39% in this trial. 

Here, we consider that the stopping criteria are p<0.01 for superiority and 

conditional power < 0.2 for futility. In Figure 2, there are three panels. 

Panel (1) shows the case that we anticipate that the response rate in the 

control group (therapy B) is 𝑝0 = 0.60. The other two panels (2) and (3) are 

for 𝑝0 = 0.40 and 0.20, respectively. The black solid curves show the 

reference boundary for superiority and the dashed curve for futility. The 

gray line in each panel indicates the observed N-T curve of the myeloma 

trial data, the three red dots on the gray line highlight the points at 𝑁 =

50,100 and 199. At these time points, the observed p-values of Fisher’s 

exact test were 0.023, 0.0089 and 0.0018, respectively, the conditional 

powers were 0.999, 0.989 and 1.00, respectively. 

Depending on the anticipation of the response rate in the control group, one 
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of these N-T plots will be used. If it is uncertain, several N-T plots may be 

used. For example, if investigators expect 𝑝0 = 0.40 is the true response rate 

in the control group, Figure 2 (2) will be used. Suppose data from 100 patients 

are available at a potential interim analysis time point. They may decide to 

perform the interim analysis at that time point, as Figure 2 (2) indicates the 

interim analysis will likely support early termination for superiority. With 

this example, if the interim analysis had been conducted, the trial would then 

have stopped with smaller number of patients than the planned sample size. 

On the other hand, when the expectation of the response rate in the control 

group is much higher, investigators may use N-T plot in Figure 2 (1). In that 

example, they may decide to perform the interim analysis since the N-T plot 

suggests the interim analysis will likely support early stopping for futility. In 

this manner, the N-T plot can be used to decide if it will be worthwhile 

conducting an interim analysis during the study, based on the expectations 

for the response rate in the control group.  
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Figure 2. N-T plot for E1A00 study; Black and solid curves are the expected N-T plots for superiority, 

black dashed curves are that for futility, and gray curves are the observed N-T plot for the case expected 

that (1) 𝒑𝟎 = 0.60, (2) 𝒑𝟎 = 0.40 and (3) 𝒑𝟎 = 0.20. 
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2.5 Discussion 

In randomized-controlled trials, monitoring which involves interim analyses 

requiring unblinding of accumulated data may risk inflation of type I error 

rate. Using our blinded data monitoring tool, we can obtain useful reference 

information of blinded data and use it to assess the appropriateness of 

conducting a formal unblinded interim analysis. According to the results of 

simulations, our data monitoring tool can potentially save study resources 

and budget by avoiding unnecessary interim analyses. From this aspect, the 

blinded analyses have remarkable characteristics in terms of saving alpha 

and operational burden to unblind the data. Note that, when the 

investigators plan to conduct interim analysis and utilize the proposed 

monitoring tool, they should pre-specify in the protocol that there is a 

possibility to reduce the number of the interim analysis using that tool. For 

those trials where skipping any scheduled planned interim analysis is 

undesirable, the proposed method should not be applied. 

With our method, the choice of doing an interim analysis depends on setting 

the 𝑝0 parameter of the control arm. Practically, the anticipated efficacy of 

the control therapy often differs from the observed results. Even in such 

cases, nevertheless, the power and type I error of our blinded monitoring 

tool remain consistent with cases when the parameter is correctly specified. 

In the cases when the knowledge of the control therapy is somewhat vague, 

we recommend considering several possible parameters for the response 

rate of the outcome in the control arm. Using the proposed graphical tool 

repeated for various control rate assumptions at the time of a given interim 
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analysis provides a comprehensive analysis and enables investigators to 

make an informed decision on decide whether to conduct the formal interim 

analysis. 

This thesis evaluated how interim monitoring of binary endpoints with data 

blinded, based on conventional frequentist hypotheses testing methods, 

impacts the operating characteristics of study design as compared with 

standard unblinded interim analysis with extensive numerical studies. This 

approach uses accessible reference information to produce a valuable 

monitoring tool for assessing the appropriateness of interim analyses in 

conventional clinical trials. Future work will examine the application to 

other types of outcomes, e.g., continuous quantitative measures using the 

mean value of blinded data. We may also apply the similar approach to time 

to event endpoints for assessing the appropriateness of conducting interim 

analyses, using the mixture of two exponential or Weibull distributions for 

blinded data. 
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Chapter 3 Interpretability of cancer 

clinical trial results using restricted mean 

survival time as an alternative to the hazard 

ratio 
 

3.1 Endpoints of cancer clinical trials 

In a cancer clinical trial to compare a new treatment with a control, the 

primary endpoint is generally either the overall survival (OS) or progression-

free survival (PFS) time. At the design stage, the hazard ratio (HR) is 

routinely used to quantify a desirable treatment effect for estimation of the 

study sample size. The total number of events needed to achieve a specific 

statistical power can be obtained easily via a back-of-the-envelope calculation. 

However, it may not be straightforward to interpret the HR clinically. Thus, 

a hypothesized HR value (e.g., 0.75) is often justified as a relative 

improvement in the median survival time (e.g., from 9 to 12 months) due to 

the treatment. While the median survival time is a clinically meaningful 

summary measure, it does not capture the long-term survival profile well. 

Therefore, the difference or ratio between two median survival times may not 

be useful to interpret the HR value at the design stage. 

At the end of the study, the OS/PFS data are routinely analyzed using the HR 

estimation procedure and log-rank test. This practice becomes more 
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problematic at the analysis stage. The limitations concerning this summary 

measure have been discussed extensively in the literature.12-17 The validity of 

using HR depends on the so-called proportional hazards assumption,18 that 

is, the hazard ratio for two groups is constant over the entire study period. 

This assumption is rarely valid in practice and without this assumption, the 

resulting HR estimate is difficult to interpret. In an interview, Professor Cox, 

the creator of the above model, stated that “Of course, another issue is the 

physical or substantive basis for the proportional hazards model. I think 

that’s one of its weaknesses…” 19 

To ease the difficulty of interpreting the estimated HR, the median survival 

time estimate is often reported for each group descriptively without formal 

comparisons in study publications. However, in studies with limited follow-

up, it may not be possible to estimate the median survival. Moreover, since 

the median survival estimate is insensitive to long-term survivors and is less 

stable with respect to precision than the HR, the estimate of the difference in 

two median survival times can result in an inconsistent conclusion about the 

treatment effect compared to that based on the HR estimate. 

The Kaplan-Meier curve provides survival probability information 

throughout the study follow-up for a group of patients. Visually, the higher 

the curve is, the better the treatment is. Therefore, the area under the curve 

within a specific time window is a reasonable summary to quantify the 

survival curve. This alternative measure is the so-called restricted mean 

survival time (RMST) or t-year mean survival time.12,13,16,17,20 This summary 

offers an intuitive, clinically meaningful interpretation. The procedure for 
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estimating the difference in two RMSTs is always valid without any model 

assumption and is more stable in comparison with the estimation of the 

median survival time. If one is interested only in comparing the long-term 

survival profiles, the t-year event rate may be an alternative summary.12 

Other group contrast measures such as the “net chance of a longer survival”14 

can also be considered. 

There is no single summary measure which can capture the entire survival 

profile of a group of patients. However, for the design and analysis of a study, 

a primary summary measure for the between-group difference is needed. The 

analysis procedure for this summary measure should be robust, not heavily 

model-dependent, and should result in clinically interpretable conclusions 

about the treatment effect. In this article, we illustrate these points using a 

recent clinical trial to evaluate an immunotherapy for lung cancer. 

 

3.2 Conventional study design and data analysis 

3.2.1 Illustration of issues for the conventional study design 

To illustrate a typical conventional study design, let us consider a recent 

randomized clinical trial (CheckMate 057), which was conducted to evaluate 

whether nivolumab would be superior to docetaxel for previously treated 

patients with advanced nonsquamous non–small-cell lung cancer.21 The 

primary endpoint was OS. The study was intended to have enough statistical 

power to detect a difference of 3.1 months in the median OS in favor of 

nivolumab (the median OS was assumed to be 11.1 months for nivolumab and 

8 months for docetaxel).  A natural summary measure of the treatment effect 
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would be the difference or ratio in two median OS times. The sample size 

estimate for the study could then be based on the desired precision of such a 

difference or based on the desired statistical power for the corresponding test 

to detect a significant difference between groups. 

Instead of taking this straightforward approach to design a trial, the clinical 

trialists routinely convert the desirable median OS time difference to an HR 

assuming that the OS time follows a simple exponential distribution for each 

group.  One then estimates the sample size using the log-rank test.  For the 

above example, the resulting HR is 8/11.1 = 0.72. Under this setting, the 

power of the study would be dependent on the observed number of deaths at 

the end of study, not on the patients’ follow-up times.  For CheckMate 057, 

we would need a total of 403 events to have a power of 90%. This resulted in 

a total of 574 patients required for the study under a certain assumption for 

the patients’ accrual and follow-up patterns over time. Moreover, like other 

trials, the conventional HR estimate with its confidence interval (CI) was 

proposed to quantify the treatment effect. 

Now, the question is why the trialists convert a heuristically interpretable 

measure such as the difference/ratio in median OS to a HR in designing the 

study. One major issue of using median survival as a summary is that often 

at the end of the study, the median survival may not be estimable due to 

limited study follow-up time.  Even when we can estimate the median 

survival time, the median may not capture the long-term survival profile due 

to its insensitivity to long-term survivors.  Moreover, it is known that the 

estimate of the median survival time is not stable—its standard error can be 
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quite large—and a substantially larger study would be needed compared with 

using HR as a measure of the treatment effect. 

 

3.2.2 Illustration of issues for the conventional data analysis 

At the end of CheckMate 057, 292 patients were treated with nivolumab and 

290 were treated with docetaxel. The total number of observed deaths was 

413. We present the Kaplan-Meier curves with reconstructed OS/PFS data 

(Figure 1) by scanning the survival curves in Figure 1 of Borghaei et al.21, 22 

The HR comparing nivolumab vs. docetaxel was 0.73 with P = 0.002. The two 

survival curves were similar until approximately 7 months after 

randomization. This suggests that the proportional hazard assumption was 

not valid and therefore, it is unclear what the observed HR of 0.73 means 

clinically.  To this end, the investigators provided a clinical interpretation of 

HR 0.73 by reporting the observed median survival times. The median OS 

time was 12.2 months (CI, 9.7 – 15.0) for nivolumab and 9.4 months (CI, 8.1 

– 10.7) for docetaxel. Since these two 95% CIs were overlapped, it was not 

clear whether there was a statistically significant difference in the median 

OS times between the two groups. It is puzzling that for almost all the studies, 

there were no formal comparisons done between two median survival times. 

Using two separate CIs of individual median survival times is not an efficient 

way to assess the difference of two medians. If we apply a simple procedure23 

to estimate the difference in two median OS times (nivolumab minus 

docetaxel), the resulting estimate would be 2.7 months (CI, -0.1 – 5.9) with 

p=0.07. In this example, using the difference in two median survival times 
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does not help us understand the clinical meaning of the statistically 

significant HR of 0.73. 

Figure 3. Overall survival and progression-free survival for patients taking  

docetaxel vs nivolumab 

 

For the PFS endpoint, the HR is 0.92 with p=0.39. Because the Kaplan-Meier 

curves crossed around Month 7 for PFS, this HR is not interpretable.  The 

reported median PFS was 2.3 months for nivolumab and 4.2 months for 

docetaxel. If we apply the above simple inference procedure, the CI for the 

difference of two median PFS (docetaxel minus nivolumab) is 0.4 – 2.6 months 

with p=0.005, indicating that docetaxel was highly significantly superior to 

nivolumab with respect to median PFS. This result is in contradiction to those 

from HR analyses for PFS and OS.  
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3.3 Alternatives to the conventional study design and analysis 

Since the study design heavily depends on the statistical analysis methods to 

be used, we first discuss alternative statistical inference procedures for 

analyzing PFS/OS data from a comparative trial using CheckMate 057 as an 

example for illustration. We then discuss in detail how to design a superiority 

study with the analytical procedure based on the RMST for practitioners. 

 

Data analysis 

As indicated in the Introduction, an alternative to the median survival is the 

RMST or t-year mean survival time. Using the reconstructed data in Figure 

1A (OS), the estimated RMST at 24 months of follow-up for nivolumab is 13.0 

months. That is, future patients receiving nivolumab followed for 24 months 

would survive for an average of 13 out of 24 months. For docetaxel, RMST 

estimate is 11.3 months. The difference in RMST is 1.7 months (CI, 0.4 – 3.1, 

p=0.012) in favor of nivolumab. This conclusion is statistically consistent with 

that from the HR or log-rank test. Graphically this difference is represented 

by the area between two Kaplan-Meier curves in Figure 1A (OS). Note that 

here the standard error estimate for the RMST estimate is obtained without 

any model assumption in contrast to others proposed in the literature.20  

For PFS (Figure 1B), the difference of RMSTs is 1.3 months (CI, 0.3 – 2.3, 

p=0.022), which is also significantly in favor of nivolumab. This result is 

consistent with that from HR numerically. For PFS, the hazard ratio 

interacted with time qualitatively over 24 months. For this case, the RMST 

based procedure can be much more powerful than the log-rank test.12 Note 
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that at the analysis stage, one can choose any t-year time window until we 

reach the last death or censored time observation to compute RMST, which 

may use more data compared with the log-rank test.  

One may be interested in estimating the survival curve beyond 2 years with 

a parametric model to estimate the mean survival time (not restricted within 

2 year window). For instance, if we use a Weibull distribution to fit the 

reconstructed OS data for each group from Figure 1A (OS), the estimated 

mean survival times are 12.26 and 17.35 months for docetaxel and nivolumab, 

respectively. The gain from the immunotherapy for OS would be 5.09 months 

with CI, 4.22 – 6.15. This extrapolation is informative, but needs to be 

interpreted cautiously.  

Another alternative measure one may use is the t-year survival rate, 

especially when we are interested in comparing two groups with respect to 

their long-term survival profiles. On the other hand, this summary does not 

include the temporal treatment effect before t years. For the present example, 

the OS rates at 2 years are 25.5% and 12.0% for nivolumab and docetaxel, 

respectively. The CI of the difference is 3.9 – 23.1, which is statistically 

significant.  

The statistical analysis for median difference and RMST difference discussed 

above can be implemented via contributed R packages -- surv2sampleComp 

and survRM2 packages. Both R packages are available from the CRAN 

website (https://cran.r-project.org/).  
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Study design 

To illustrate how to design a study with RMST for the primary analysis, we 

mimic the CheckMate-057 study setting and estimate the sample size for a 

study powered to detect a postulated difference of two RMSTs or to have a 

specific precision for estimating the difference. Furthermore, we show how to 

set the study termination time when conducting the trial. Here is the step-

by-step process. Note that this process can be applied to a general, practical 

setting with an event-time as the endpoint under any assumed patterns of 

the patient’s accrual and loss to follow-up profiles.  

1.  Let OS time be the primary endpoint. Suppose that we are interested in 

the RMST within a 24-month time window. The duration of this time 

window may be informed by considerations of both clinical significance and 

study feasibility. Note that the time window for RMST should be pre-

specified in the study protocol.  

2. Obtain the median or mean survival time for the control arm from historical 

data. Using a parametric model (for example, exponential) to calculate the 

RMST with a specific time window. In our example, we fit the reconstructed 

OS data from docetaxel group with an exponential distribution. This results 

in an estimated mean survival time of 13.3 months and in a 24-month 

RMST of 11.1 months.  

3. Assume that we are interested in detecting an increase of a 24-month RMST 

of 3 months from docetaxel group in this time window (i.e., 14.1 months in 

nivolumab group) with 90% power. Assuming the exponential distribution, 

then nivolumab group has a mean survival time of 16.3 months.  
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4. Set the study patients’ accrual period and follow-up time distribution, which 

depend on the practical limitations. Here, for illustration, assume we would 

have similar accrual and follow-up time patterns as those from CheckMate-

057. Figure 2 shows the censoring distribution by pooling the data from both 

treatment groups from CheckMate-057. Since the primary endpoint is OS 

time, we may assume that each patient’s mortality status was known at the 

end of the study. From Figure 2, it appears that the accrual time period was 

about 11 months, with patients entering the study uniformly over this time 

period, and the last patient enrolled was followed for 15 months. Under 

these assumptions, future patients who enter the potential trial in the first 

two months are expected to have at least 24 months of follow-up. Therefore, 

the RMST for each treatment group can be estimated well. Other 

enrollment and follow-up patterns can be considered as well for designing a 

study. The key is to ensure that the potential follow-up time for a nontrivial 

proportion of patients is adequate for estimating the RMST in the specified 

time window. 

Figure 4. Distribution of the Censoring Times 
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5. To estimate the sample size under the above setting, for any given sample 

size n with 1:1 treatment allocation, we generate a sample of OS times for 

each group using the above exponential distributions. We then generate 

corresponding censoring times via the distribution determined by the 11 

months of accrual period and additional 16 months of follow-up after the 

completion of accrual. With these two samples of censored OS time data, the 

estimate of the difference in RMST, its variance estimate using pooled data 

from two treatment groups, and the corresponding test statistic, Z-score, are 

recorded. We repeat this simulation procedure, say, 3000 times, to 

approximate the power of this potential study. If the power is less (or 

greater) than 90%, we then increase (or decrease) the sample size n and 

repeat the above process until the empirical power reaches the target level. 

This results in a total of 336 patients (168 per arm) to obtain 90% power to 

detect a 3-month difference in RMST. Note that conventionally the 

reciprocal of the average of the above 3000 variance estimates is coined as 

the total information time of the study. For the present case, the average 

standard error for the RMST difference estimate is about 0.94 months. With 

this standard error, the expected 95% CI would be about 1 – 5 months.  

6. Like other clinical trials, when we apply a proposed design setting to 

conduct a real study, the patients’ accrual profile and follow-up time 

distribution are likely different from the assumed ones. For the present 

case, one may set the maximum calendar time for study termination being 

the time of the last patient entering the study plus 24 months. The study 

may be terminated early when the observed standard “information time” 
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(the reciprocal of variance estimate of the RMST difference) at a specific 

time point reaching the above total information time specified in Step 5. In 

fact, the trial may be terminated when, for instance, a handful of patients in 

each arm has reached 24 months of follow-up. 

Note that when using the conventional log-rank test as the primary analysis 

tool, we set a specific total number of events as the total information time. To 

estimate the study sample size, we also need to assume the patients’ 

accrual/follow-up temporal profile. When the event rate is unexpectedly low 

in the real study, using such a total time information measure may 

unnecessarily prolong the study duration. On the other hand, with the t-year 

mean survival time difference or rate as the group contrast measure, the 

study would have a well-defined maximum duration time.  

The procedure for designing a comparative trial with survival data discussed 

here can be implemented via the contributed R package SSRMST from the 

CRAN website (https://cran.r-project.org/web/packages/SSRMST/index.html). 
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3.4 Discussion 

The design and analysis of a conventional cancer clinical trial with OS/PFS 

outcome can be improved by adopting a robust statistical procedure that 

enables clinically meaningful interpretation of the treatment effect. The 

RMST based statistical method may be used as a primary tool for design 

and analysis of a comparative study. It may also help us to better 

understand the clinical interpretation of the HR when the proportional 

hazards model assumption is plausible. For the RMST or t-year mean 

survival time, the choice of t-year is a study characteristic, which should be 

pre-specified in the study protocol with a certain clinical justification. This 

time point should not be changed for the final primary analysis. The 

exploratory analysis may be conducted with various time windows. 
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Chapter 4 Conclusion 
 

 

In this thesis, the simulation results for the proposed monitoring tool 

showed that the tool does not affect size or power, but dramatically reduces 

the expected number of interim analyses when the effect of the treatment 

difference is small. The tool serves as a useful reference when interpreting 

the summary of the blinded data throughout the trial, without losing the 

integrity of the study. This tool could potentially save the study resources 

and budget by avoiding unnecessary interim analyses.  

In addition, this thesis proposes the design using RMST, which is 

statistically robust and clinically interpretable endpoint. The design and 

analysis of a conventional cancer clinical trial can be improved by adopting 

a robust statistical procedure that enables clinically meaningful 

interpretations of the treatment effect. The RMST-based quantitative 

method may be used as a primary tool for future cancer trials or to help us 

to better understand the clinical interpretation of the HR even when its 

model assumption is plausible. 

 

For clinical trial design, it is necessary to pre-specify the appropriate study 

endpoint and statistical analysis method in detail according to the clinical 

benefit of the targeted therapy and the population. Both proposals in this 
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thesis may be useful for future clinical trial design, and it is expected to be 

able to introduce study protocol that can overcome the existing challenges in 

clinical trials of cost/resource problems and interpretation of treatment 

effect from the statistical viewpoint. To improve the pharmaceutical 

development process for clinically useful treatment, a pre-specified tool for 

decision making to consolidate cost/resource into the trials for beneficial 

treatment would be critical. It is also essential from the viewpoint of the 

social significance of clinical trials that statistical methods and the results 

obtained in clinical trials are useful and interpretable for clinicians and 

patients.  

Generally, the primary goal of a comparative clinical study is to estimate an 

overall treatment effect. However, a “positive” trial based on such an 

average effect over the entire patient population does not mean every 

patient would benefit from it. On the other hand, a “neutral or negative” 

trial does not mean no patients would benefit from the new therapy. For 

designing future cancer studies, it is essential to have a pre-specified 

procedure based on the patients’ baseline characteristics collectively to 

identify a so-called high-value subgroup of patients who would clinically 

benefit from the new therapy.24 In published guidance on the enrichment 

strategies for clinical trials,25 the US FDA encourages the clinical trialists to 

consider such a predictive enrichment strategy. This pre-specified procedure 

would be an ideal tool to identify, and future work will examine the design 

to identify future patients to be treated by targeted therapy. For example, a 

specific subgroup of patients who would benefit from nivolumab or 
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pembrolizumab for treating a specific subpopulation of NSCLC patients via 

trials such as CheckMate-057, CheckMate-02626 and KeyNote-024 with the 

patient’s baseline information regarding, for instance, PD-L1, gene 

signatures and epitope load et al collectively.   
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