
 
 
 
 
 
 

学位論文 

 

「Improvement of gas exchange during high frequency 

intermittent oscillation in rabbits」 

（高頻度間欠的振動換気におけるガス交換能の改善度） 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
指導教授名 宮地 鑑 教授 
   （心臓血管外科） 
 
申請者氏名 笠原真悟 
 

 



 
 
 

著者の宣言 

 
  本学位論文は、著者の責任において実験を遂行し、得られた真実の結果に 
基づいて正確に作成したものに相違ないことをここに宣言する。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

－ⅱ－ 



 
Abstract 

 
 
 

Objective: Axial gas transport is greatly dependent on the ratio of radial mixing to the 
advection flow in accelerated dispersion of gases, and this determines the gas transport in 
high frequency oscillation (HFO)in clinical use(tidal volume=1-3ml/kg, respiratory 
rate=15Hz)). Intermittent oscillatory flow has been reported experimentally to improve axial 
dispersion of respiratory gases by manipulating the flow waveform of oscillatory flow in vitro 
previous study. We clinically investigated the improvement of high-frequency intermittent 
oscillation (HFIO).  
Methods: Seven male rabbits were anesthetized and controlled with conventional ventilation. 
Arterial blood gas was sampled to analyze PaO2, PaCO2 and other hemodynamic parameters 
after conversion to high-frequency oscillation (HFO) or HFIO.  
Results: There were no differences in PaO2 profiles between HFO or HFIO. Arterial CO2 
levels were dependent on the tidal volume and waveforms. At the same tidal volume, HFIO 
resulted in better CO2 elimination (benefit level 10-14%) than did HFO. CO2 expiration was 
significantly higher with HFIO. In the experimental animal model of RDS produced by lung 
lavage, HFO and HFIO are effective in improving pulmonary functions even in the diseased 
lung. 
Conclusions: At a small tidal volume (2.0–2.5 ml/kg), gas exchange on the intermittent 
waveform is significantly higher than with sinusoidal waveforms. Intermittent waveforms are 
more efficient than are sinusoidal forms not only under normal conditions but also in the 
critically diseased lung. 
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和文要旨 

 
 
 

【背景】高頻度振動換気法（HFO）は臨床で用いられている換気条件（換気体積＝1-3ml/kg、

換気回数＝15Hz）では、軸方向の対流に対して断面積混合不足し、軸方向の輸送が改善しな

い場合がある。現在までのin vitroの研究で、換気波形として移流期と移流期の間に静止期

を設けた間欠流を採用することにより、ガス輸送が改善されることが示されている。そこで

生体に対し、間欠流を用いたHFO(HFIO)でのガス交換を評価することを目的とする。 

【方法】新生児を想定して体重3kg前後の7羽の兎に全身麻酔下にて人工呼吸器管理を行い、

ガス交換能の改善度を動脈内酸素分圧（PaO2）、二酸化炭素分圧（PaCO2）にて評価した。ま

た、肺洗浄により病的肺を作成し、この状態でのHFOおよびHFIOでのガス改善度も評価した。 

【結果】従来の人工換気に比べ、HFO、HFIOでは換気体積に応じて PaCO2の改善度が得られ

た。HFO、HFIOの比較においては同一換気体積ではHFIOで10-14%の改善度でPaCO2が低下し

た。擬似 RDS肺モデルとしての洗浄肺の実験においても、従来からの人工換気では呼吸状態

が維持できなかったが、HFO、HFIOでは時間とともに血液ガス所見は改善し、ことにHFIOで

は有意に改善した。 

【結論】高頻度振動換気において間欠流は肺胞換気において有利であり、従来の HFOに比べ

少ない換気体積で呼吸器管理が可能であり、特に病的肺モデルにおいてもHFIOの血液ガス改

善度は明らかであった。 

 

Key words: 高頻度振動換気、高頻度間欠的振動換気、新生児呼吸不全 
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1 Introduction 
It is evident that advances in respiratory care, including development of artificial 

ventilation methods, have profoundly contributed to the treatment of not only respiratory 
insufficiency but also the post-surgical management of patients. It has, however, become an 
issue that artificial ventilation causes complications such as pulmonary barotraumas and 
bronchopulmonary dysplasia, which greatly affect the prognosis of patients. High-frequency 
oscillation (HFO) is an excellent artificial ventilation method that was developed to reduce 
pulmonary barotrauma. This method delivers oscillatory flow of a tidal volume smaller than 
the anatomical dead space volume into the trachea at a rate of 5–30 Hz. Both inspiration and 
expiration are active.1 As anatomical dead space is not considered to directly contribute to gas 
exchange, the phenomenon that normal ventilation can be performed with delivery of a tidal 
volume less than the anatomical dead space has attracted considerable attention from the view 
point of respiratory physiology. This is because it is contradictory to the accepted view that 
pulmonary gas transport is solely dependent on convection flow.2 As inspiration and 
expiration are actively performed with HFO, it is more advantageous compared with other 
high-frequency ventilation modalities: it reduces the likelihood of air trapping3 and minimizes 
respiratory-dependent changes in blood pressure and cerebrospinal pressure.4 Beginning with 
the study of Bulter et al.,5 many clinical studies have reported the efficacious use of HFO, 
mainly in subjects ranging from newborns with low birth weight to adolescents.6,7 However, 
HFO is not always considered to be clinically useful, because there have been some cases in 
which it does not improve efficiency of gas exchange over that of conventional mechanical 
ventilation (CV), even in suitable cases. Therefore, its use should be confined to cases whose 
characteristics are well understood. Axial gas transport is greatly dependent on the ratio of 
radial mixing to the advection flow in accelerated dispersion of gases, and this determines the 
gas transport in HFO.2,3 Thus, gas transport can be increased if such a ventilation waveform 
that enhances radial mixing is adopted. Fujioka et al. assessed the axial dispersion of 
oscillatory flow in a straight tube by using numerical analysis.8 They demonstrated that 
interpolation of a stationary phase in the phases in which dispersed molecules moved at the 
maximum rate increased its axial transport, with a 1.5- to 2.2-fold increase in the effective 
diffusivity under ventilation conditions where HFO was clinically used.8 Furthermore, Tanaka 
et al. demonstrated improvement of axial dispersion by intermittent oscillatory flow in a 
multi-branched duct based on experimental results obtained with a straight tube and a 
bronchopulmonary model.9,10 Tanaka et al. also measured the arterial CO2 pressure and 
expired CO2 concentration during high-frequency intermittent oscillatory flow in rabbits to 
verify the intermittent augmentation effect on gas exchange from the point of mechanical 
engineering.11 The present investigation was conducted to assess the improvement of gas 
transport from the clinical point of view by the application of high-frequency intermittent 



oscillation (HFIO) to live animals in which a stationary phase was interpolated in sinusoidal 
waves used in HFO.  
 
2 Subjects and Methods 
2.1 Experimental animals 

Rabbits were used in this study because of their similarities in makeup and pulmonary 
structure to those of human newborns. Their mean body weight was 3.01 ± 0.36 kg (mean ± 
SD, n = 7). Male rabbits were used throughout the study to  avoid the metabolic influences 
produced by the changes in hormonal conditions in females. 
 
2.2 Apparatus 
2.2.1 Respiratory circuit 

The experimental system is shown schematically in Figure 1. The flow line between a 
piston generating oscillatory flow and the living body was constructed with hard acrylic 
tubing and designed to minimize bending and changes in tube caliber and, thereby, to avoid 
loss of oscillatory components. An electromagnetic vibration generator was used to generate 
oscillatory flow. Connecting the generator to the piston enabled the output of sinusoidal flow 
or arbitrary intermittent flow. Displacement of the piston was measured by a laser 
displacement sensor, and sinusoidal flow and intermittent flow were adjusted and maintained 
in their correct forms by monitoring stroke displacement. Disturbance of ventilation in this 
artificial respirator was reduced by minimizing anatomical dead space (20 ml) and 
maximizing a mixing space of inspired gas and fresh air (180 ml). Oxygen supply and carbon 
dioxide removal were achieved by filling a part of the circuit with fresh air introduced at a 
constant flow rate (10 L/min) into the circuit. To suppress the loss of oscillatory components 
and deformation of waveforms by introduction of the constant flow, a low cut filter was 
placed at the exit port.  
 
2.3 Measuring instruments:  

Ventilation volume was calculated from the flow speed measured by a hot wire 
anemometer probe. Mesh screens were placed 10 mm anterior and posterior to the probe to 
generate homogeneous disturbance of the flow across the cross sectional area of the tube to 
ensure that flow volume could be calculated from the flow speed measured at the center. 
Airway pressure was measured by a semiconductor pressure transducer. Concentrations of 
carbon dioxide in expired gas were measured by a far-infrared absorption carbon dioxide 
sensor. Blood pressure and electrocardiograph were continuously monitored using a 
polygraph. Concentrations of gases in blood samples were measured by blood gas analyzers 
(ABL505/OSM3 Radiometer A/S, Denmark).  



 
2.4 Experimental procedures 
2.4.1 Anesthesia and preparation for experiment 

Seven male rabbits were used. Anesthesia was introduced with an injection of pentobarbital 
sodium (Nembutal) into the ear vein at an initial dose of 30 mg/kg. Skin hair on the thigh 
and the neck of a rabbit were then removed and the rabbit was fixed onto a surgical table. 
After confirming a sufficient degree of anesthesia, a tracheal section was made, and the rabbit 
was intubated with a 4.5-mm diameter endotracheal tube fixed tightly to prevent air leakage. 
A muscle relaxant, pancuronium bromide (1 mg), was then injected intravenously to stop 
spontaneous respiration completely, and catheters were inserted into the femoral artery to 
collect blood samples and measure blood pressure. After intubation, ventilation was 
maintained by CV under the following conditions: fractional concentration of oxygen in 
inspired gas (FiO2), 0.36; tidal volume (Vt), 10 ml/kg; and frequency of ventilation (f), 25–30 
bpm. The rabbits were maintained with CV to stabilize their metabolism and hemodynamics 
for 10–20 minutes and blood was then collected to determine the basal values of measurement 
parameters.  
 
2.4.2 Shift from CV to HFO or HFIO 
 The ventilation mode was switched from CV to HFO or to HFIO by exchanging 
endotracheal tubes and sustained inflation (SI) was then carried out for about 30 seconds to 
minimize the influence of switching. SI is a procedure in which airway pressure is maintained 
higher than usual (20–30 cmH2O or about 10 cmH2O higher than the mean airway pressure) 
for 15–20 seconds to correct the P-V curve, keep pulmonary alveoli open, and facilitate 
ventilation. It is an effective way for rapid and sustained optimization of gas exchange during 
HFO.11 After SI, the tidal volume and mean airway pressure were adjusted. As changes in 
these two parameters affected each other, they were adjusted several times to control the 
ventilation conditions, a procedure which took 1–2 minutes. 
  
2.4.3 Measurements during HFO and HFIO  

During HFO and HFIO, oscillation frequency and FiO2 were kept constant at 15 Hz and 
0.36, respectively. In the experiments with HFO and HFIO, which were performed at Vts of 
2.0, 2.5, or 3.0 ml/kg, blood gases and other parameters were measured 5 minutes, 10 minutes, 
and every 10 minutes thereafter, following introduction of HFO or HFIO, for not more than 
30 minutes if the hemodynamics were stable. If hemodynamic parameters markedly worsened, 
the ventilation mode was returned to CV. The intermittent ratio (τ) during HFIO was set to 1/2 
based on results of previous numerical analysis8 and experiments in animal models.9 However, 
one such study demonstrated that ventilation efficiency was maximal when τ was ¼.8 This 



was because collapse of the airway, due to excessive negative pressure around the main and 
other bronchi caused by shortening of the advection period, was expected under these 
conditions. After a series of measurements under one ventilation condition was completed, the 
rabbit was ventilated by CV for 10–20 minutes to stabilize respiratory and hemodynamic 
parameters. Subsequently, the next series of measurements under the other ventilation 
condition was started. To avoid an order effect, the series of measurements under different 
ventilation conditions were performed in a random order. Furthermore, the extracellular fluid 
was continuously infused to reduce the influence of frequent blood sampling, and body 
temperature was maintained with a heater to prevent anesthesia-dependent hypothermia 
caused by decreased metabolism.  
 
2.5 Experiment with the lavaged lung–a model of respiratory distress syndrome 

Lachmann et al. developed an experimental model of the respiratory distress syndrome 
(RDS) in which alveolar surfactant phospholipids were removed by lung lavage with 
physiological saline.13 To examine the improvement of gas exchange capacity with HFO or 
HFIO in the severely diseased lung, experiments were conducted in rabbits subjected to lung 
lavage. Physiological saline was infused under hydrostatic pressure (about 10 cmH2O) to 
prevent excessive positive pressure. Lavage fluid was also carefully suctioned to prevent 
excessive negative pressure. Lung lavage was performed 5 times, each with 30 ml of 
physiological saline (150 ml in total). During the lavage, the rabbit was ventilated with the 
appropriate CV under hyperventilation conditions (FiO2, 1.0; Vt, 12 ml/kg; and f, 50 bpm). 
The lung lavage took 15–20 minutes. Lung lavage was judged to be achieved if PaO2 
decreased to less than 100 mmHg under conditions in which FiO2 was 1.0 following lavage.14 
HFO or HFIO was carried out under the following conditions: oscillation cycle, 15 Hz; FiO2, 
1.0; and Vt, 2.5 ml/kg. As it was considered that the diseased lung needed a longer time for 
recovery, the experimental period was set longer than that for the intact lung.  
 
3 Results 
3.1 Arterial oxygen tension (PaO2) 

The time course of changes in PaO2 ratio during sinusoidal flow ventilation and 
intermittent flow ventilation are shown in Figure 2. The continuous horizontal line in the 
figure represents the mean PaO2 during CV. Changes in PaO2 ratio (PaO2 during intermittent 
flow ventilation/PaO2 during sinusoidal flow ventilation) are shown in Figures 3 and 4. When 
Vt was set to 3.0 ml/kg, PaO2 was slightly higher during sinusoidal flow ventilation than that 
during CV. However, no differences were found in PaO2 between either ventilation condition 
when Vt was set to 2.0 ml/kg or 2.5 ml/kg. PaO2 was higher during intermittent flow 
ventilation than that during sinusoidal flow ventilation when Vt was set to 2.0 ml/kg or 2.5 



ml/kg. In particular, at a Vt of 2.5 ml/kg, PaO2 ratios increased to levels comparable to that 
during sinusoidal flow ventilation at a Vt of 3.0 ml/kg. These results indicate that oxygenation 
was better improved by intermittent flow ventilation than by sinusoidal flow ventilation under 
these conditions. When Vt was set to 3.0 ml/kg, however, there were no differences in PaO2 
during intermittent and sinusoidal flow ventilation, and PaO2 ratios were slightly lower than 
those at a Vt of 2.5 ml/kg. Compared with sinusoidal flow ventilation, the improvement in 
PaO2 with intermittent flow ventilation depended on Vt values: 2.5 ml/kg >2.0 ml/kg >3.0 
ml/kg. These results suggest that intermittent flow ventilation improved oxygenation, though 
the effect was not statistically significant, probably due to the large inter-individual variation 
in rabbit metabolic activities.  
 
3.2 Arterial carbon dioxide tension (PaCO2) 

The time course of changes in the PaCO2 ratio during sinusoidal flow ventilation and 
intermittent flow ventilation are shown in Figure 5, and changes in the PaCO2 ratio (PaCO2 
during intermittent flow ventilation/PaCO2 during sinusoidal flow ventilation) are shown in 
Figures 6 and 7. During sinusoidal flow ventilation, PaCO2 was lower when Vt was set to 3.0 
ml/kg than that during CV. However, it was higher during sinusoidal flow ventilation, with 
Vts of 2.0 ml/kg and 2.5 ml/kg, than that during CV, indicating retention of carbon dioxide in 
the blood. It was particularly difficult to continue the experiment for 20 minutes because the 
animals showed signs of respiratory acidosis with a Vt of 2.0 ml/kg. On the other hand, 
PaCO2 during intermittent flow ventilation with Vts of 2.0 ml/kg and 2.5 ml/kg was 
considerably lower than that during sinusoidal flow ventilation. In particular, PaCO2 during 
intermittent flow ventilation at a Vt of 2.0 ml/kg was lower than that during sinusoidal flow 
ventilation at a Vt of 2.5 ml/kg (Figures 5,6). As shown in Figure 7, PaCO2 was most 
improved at a Vt of 2.0 ml/kg, and PaCO2 during intermittent flow ventilation was 14% lower 
than that during sinusoidal flow ventilation (P < 0.05). At a Vt of 2.5 ml/kg, PaCO2 was also 
10% lower during intermittent flow ventilation than that during sinusoidal flow ventilation (P 
< 0.05), though PaCO2 at a Vt of 3.0 ml/kg was slightly higher during intermittent flow 
ventilation. These results indicate that intermittent flow ventilation dramatically improved gas 
exchange efficiency over sinusoidal flow ventilation under insufficient ventilation conditions; 
however, it was very slightly worsened by intermittent flow ventilation at a Vt of 3.0 ml/kg.  
 
3.3 Carbon dioxide concentration in expired gas 

Figure 8 shows the time course of changes in CO2 concentration in expired gas during 
sinusoidal flow ventilation and intermittent flow ventilation. Figure 9 compares CO2 
concentrations ratio classified by tidal volume between sinusoidal and intermittent flow 
ventilation, which indicates the improvement in CO2 expiration with intermittent flow 



ventilation. Expiratory CO2 gas concentrations increased with increasing tidal volume, during 
both sinusoidal and intermittent flow ventilation. CO2 concentrations in expired gas were 
inversely related to PaCO2. 
 
 
3.4 Arterial pH and acid-base balance  

The time course of changes in pH during sinusoidal flow ventilation and intermittent flow 
ventilation are shown in Figure 10. The continuous horizontal line in the figure represents the 
mean pH during CV. pH was higher during intermittent flow ventilation than that during 
sinusoidal flow ventilation when Vt was set to 2.0 ml/kg or 2.5 ml/kg. In particular, pH during 
intermittent flow ventilation at a Vt of 2.5 ml/kg was about 7.4 and approached to levels 
comparable to that during CV. When Vt was set to 3.0 ml/kg, however, there were no 
differences in pH during intermittent and sinusoidal flow ventilation. In this instance, pH in 
both ventilation conditions exceeds that during CV. Because sinusoidal flow ventilation is 
already sufficient, intermittent flow does not have substantial effect.Figure 11 shows the 
relationship between arterial HCO3 concentration and PaCO2 in sinusoidal flow ventilation 
and intermittent flow ventilation. The solid line represents the condition for a pH of 7.4. A 
cross mark(X) represents the mean value during CV. The plotted data represent the value at 10 
minutes in sinusoidal flow ventilation with a Vt of 2.0 ml/kg and those at 20 minutes in the 
other conditions. As shown in Figure 11B, sinusoidal flow ventilation showed signs of 
respiratory acidosis with Vts of 2.0 ml/kg and 2.5 ml/kg. On the contrary intermittent flow 
ventilation showed almost normal conditions with the same Vts. Therefore, the use of 
intermittent oscillatory flow effectively improves ventilation conditions under insufficient 
ventilation conditions. On the other hand, CV showed signs of respiratory alkalosis under 
sufficient ventilation conditions. Also, both the sinusoidal and intermittent flow ventilation 
showed signs of respiratory alkalosis with Vt of 3.0 ml/kg.  
 
3.5 Experiment with lavaged lung 
 Figures 12 and 13 show the time course of changes in the PaO2 ratio and the PaCO2 ratio, 
respectively during artificial ventilation in rabbits subjected to lung lavage. In this experiment, 
changes in respiratory and hemodynamic parameters were compared between CV and 
high-frequency oscillatory ventilation under conditions of sinusoidal flow and intermittent 
flow. PaO2 in the blood collected at the end of lung lavage was less than 100 mmHg in all the 
rabbits, indicating that their lung lavage was successfully completed. Under CV, 
hemodynamics worsened over time after lung lavage, and neither PaO2 nor PaCO2 recovered 
throughout the experiment. On the other hand, hemodynamics recovered over time after 
switching the ventilation mode from CV to sinusoidal flow ventilation or intermittent flow 



ventilation; under the latter, PaO2 increased to 80 mmHg, and PaCO2 decreased to 30 mmHg 
30 minutes after the start of the experiment. 
 
4 Discussion 

Research on HFO started in Toronto with the objective of developing effective ventilation 
methods for the fragile lung from the view point of pediatric intensive care management, 
which has made a significant contribution to neonatal medicine with the completion of the 
Hummingbird oscillator in 1986.15 There have been numbers of basic studies on HFO; these 
demonstrate that, unlike ordinary methods, HFO is an active ventilation method mainly based 
on gas dispersion. Clinically we have often experienced that, in addition to theoretically 
established gas exchange, promotion of sputum excretion by vibration improves oxygenation 
during HFO. Furthermore, HFO is clinically advantageous, because it reduces fighting by 
enhancement of hypopnea which is attributable to stimulation of the vagal nerves.5,16 
However, HFO is not always useful, because it cannot show better improvement of gas 
exchange capacity compared with ordinary CV, even in suitable cases. Therefore, its use 
should be confined to cases whose characteristics are understood well. Lee concluded from 
the results of his study that HFO worked to promote dispersion transport by inducing 
turbulent flow.17 Furthermore, Fujioka et al. demonstrated that turbulent flow (radial mixing) 
generated by interpolation of a stationary period in the phase in which dispersion substances 
move at maximal rate, increased its axial transport.8 They calculated that effective diffusivity 
increased by 1.5- to 2.2-fold under ventilation conditions where HFO was clinically used.8 
Tanaka et al. also studied the effect of oscillatory flow on the efficiency of axial dispersion of 
gases by using a 4th generation multi-branched tube system based on the pulmonary airway 
model and they demonstrated that axial diffusivity is 1.6 times greater on average in 
intermittent flow ventilation than that in sinusoidal flow ventilation.10 As these in vitro studies 
suggested the possible clinical efficacy of intermittent flow ventilation, the present study 
assessed the in vivo efficacy of intermittent flow ventilation in experimental animals.  
 
4.1 Arterial oxygen tension 

Mean PaO2 was higher during intermittent flow ventilation than that during sinusoidal flow 
ventilation in the present study, suggesting the improvement of oxygenation by introduction 
of intermittent flow. However, the effect was not statistically significant, probably due to great 
inter-individual variation in animal metabolic activity. As Thompson et al. failed to show a 
difference in PaO2 during CV and HFO at an equivalent mean airway pressure in dogs,18 the 
effect of HFO may be greatly affected by experimental conditions used. It is considered that 
statistically significant differences were not found in this study because the oxygen tension in 
inspired gas was maintained to 0.36, a two-fold higher level than atmospheric pressure.  



 
4.2 Arterial carbon dioxide tension  

When PaCO2 was compared between ventilation conditions with sinusoidal flow and 
intermittent flow at equivalent Vts (2.0 ml/kg and 2.5 ml/kg, respectively), PaCO2 during 
intermittent flow ventilation was significantly lower than that during sinusoidal flow 
ventilation (Student’s t-test). This result also demonstrated a Vt-dependent decrease in PaCO2 
that was more evident during intermittent flow ventilation. Tidal volume is generally 
increased when CO2 retention is observed during HFO in clinical practice. The results of the 
present study suggest that this also occurs with intermittent flow ventilation. 
4.3 CO2 concentration in expired gas 

During sinusoidal flow ventilation, expiratory CO2 concentrations were markedly lower at 
a Vt of 2.0 ml/kg than that at Vts of 2.5 ml/kg and 3.0 ml/kg, which are considered to induce 
respiratory acidosis. On the other hand, expiratory CO2 concentrations were higher during 
intermittent flow ventilation than during sinusoidal flow ventilation. Furthermore, these 
differences were more evident at smaller Vts, and expiratory CO2 concentrations were 
1.2-fold higher during intermittent flow ventilation than that during sinusoidal flow 
ventilation at a Vt of 2.0 ml/kg. In common with other parameters, expiratory CO2 
concentrations were markedly improved by intermittent flow ventilation compared with 
sinusoidal flow ventilation. However, these concentrations were the same or even lower than 
during sinusoidal flow ventilation at a larger Vt, indicating disappearance of the effect of the 
difference in ventilation waveform under these conditions. 
In lung-intact animals, HFIO improved gas exchange capacity compared with HFO under 
conditions of small Vt, but this effect disappeared at large Vts. The phenomenon may be 
largely dependent on the flowing state of gas molecules (flow field) in a tube. Intermittent 
flow used in the present study was thought to increase the radial mixing of gases (which was 
thought to be deficient in sinusoidal flow), and was expected to facilitate molecular dispersion 
in a stationary period. However, under ventilation conditions of sinusoidal flow at a large Vt, 
or intermittent flow, the flow field may shift to a turbulent flow, which maximally induces 
radial mixing. That is, as a boundary layer is not sufficiently formed when the advection flow 
rate is high, radial mixing hits its ceiling and molecules are not axially dispersed, but move 
back-and-forth in the same place. Therefore, in the present study, intermittent flow ventilation 
markedly improved gas exchange capacity when the flow field was laminar, because radial 
mixing facilitates molecular dispersion in such a condition. On the other hand, the improving 
effect disappeared when the tidal volume became larger because radial mixing was already 
maximized in that condition. 

As previously mentioned, HFO was originally developed to reduce barotraumas by 
lowering airway pressure. However, it is required to send the same volume of gases into the 



airway in a shorter time during HFIO than during HFO because the advection period is 
shorter in HFIO than it is in HFO. Therefore, air pressure naturally becomes higher during 
HFIO than it does during HFO. This was observed in the present study. Pressure variations at 
the outlet of the artificial respirator were larger during HFIO than they were during HFO. 
Therefore, it is understood that pressure in a relatively large airway becomes higher during 
HFIO than it does during HFO. However, there may be little likelihood that large variations of 
pressure induce barotraumas in relatively large airways because the structures are firmer. 
Pressure variations are larger during HFO with sinusoidal flow than those during CV. 
Therefore, it is important to minimize pressure variations in the peripheral airways in cases 
suitable for HFO. The pressure around the pulmonary alveoli depends on the mean airway 
pressure and the tidal volume. Moreover, the pressure around the pulmonary alveoli is not 
directly affected by the pressure in the relatively large airways because oscillatory 
components are interrupted by repeated bifurcation, and the waveforms become less apparent 
around the pulmonary alveoli. Therefore, pressure variations around the pulmonary alveoli 
during intermittent flow ventilation are thought to be the same as or smaller than those during 
sinusoidal flow ventilation, and this is in spite of greater pressure variations in the relatively 
large airways during intermittent flow ventilation. 
 
4.4 Experiment with the lavaged lung 

In the experimental animal model of RDS produced by lung lavage, blood gas parameters 
were worsened during CV along with the worsening of hemodynamics, so it was difficult to 
continue the experiment. In HFO, PaO2 became lower immediately after switching the 
ventilation mode from CV to other ventilation modes, but it gradually recovered reaching 60 
mmHg 30 minutes after switching. During HFO and HFIO, pulmonary functions further 
recovered thereafter. These results indicate that HFO is effective in improving pulmonary 
functions even in the diseased lung. In particular, greater improvements of hemodynamics and 
pulmonary functions are expected with the introduction of intermittent flow as a ventilation 
waveform due to further facilitation of gas exchange. 
 
5 Conclusions 
These results have demonstrated that the introduction of intermittent flow during 
high-frequency oscillatory ventilation facilitated gas exchange. Particularly, the improvement 
of PaCO2 and expiratory CO2 concentrations were evident. These parameters were improved 
by up to 20% over those during sinusoidal flow ventilation at equivalent Vts. The extent of 
facilitation of gas exchange was greater at a smaller Vt, indicating that introduction of 
intermittent flow makes it possible to carry out ventilation with a smaller ventilation volume. 
The experiment with the diseased lung model demonstrated that HFO and HFIO were also 



effective in this condition, and that HFIO gave greater facilitation of gas exchange than did 
HFO.   
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8 FIGURE LEGENDS 

Figure 1. Respiratory circuit for high-frequency intermittent oscillation 

 

Figure 2. Time course of arterial oxygen tension changes (PaO2 ratio of sinusoidal and 

intermittent flow to conventional ventilation) 

 

Figure 3. Time course of changes in PaO2 ratio of intermittent flow to sinusoidal flow 

 

Figure 4. PaO2 in sinusoidal and intermittent flow 

 

Figure 5. Time course of arterial CO2 tension changes (PaCO2 ratio of sinusoidal and 

intermittent flow to conventional ventilation) 

 

Figure 6. Time course of changes in PaCO2 ratio of intermittent to sinusoidal flow 

 

Figure 7. PaCO2 in sinusoidal and intermittent flow 

 

Figure 8. Time course of expiratory CO2 concentration changes (sinusoidal and intermittent 

flow) 

Figure 9. Expiratory CO2 concentrations ratio of intermittent to sinusoidal flow 

 

Figure 10. Time course of arterial pH changes (sinusoidal and intermittent flow) 

 

Figure 11. Relationship between arterial HCO3 concentration and PaCO2 (sinusoidal and 

intermittent flow) 

 



Figure 12. PaO2 profiles after lung lavage 

(PaO2 ratio of sinusoidal and intermittent flow to conventional ventilation) 

 

Figure 13. PaCO2 profiles after lung lavage (PaCO2 ratio of sinusoidal and intermittent flow 

to conventional ventilation) 

 

Figure 14. Expiratory CO2 concentrations ratio of intermittent to sinusoidal flow in lavaged 
lung 
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