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Abatract

Instantons are solutions to a Yang-Mills model. The four-dimensional, one time and three spaces, Yang-Mills model is a gz
theory which describes the behavior of the fundamental interactions without the gravitation, namely the electromagnetic, v
and strong interactions. It is know that instantons play important roles in the study of non-perturiatiteie gauge theories.

Of particular importance for the instantons is its systematic generation method of solutions, known as the Atiyah-Drinfe
Hitchin-Manin (ADHM) construction. We usually need the solve partiffiedential equations (PDES) to obtain the instantons,
but when using the ADHM construction then weffsze to only solve algebraic equations instead of PDEs. Moreover it is know
that the ADHM construction can algebraically constructs all the instantons.

One of other important solution in particle physics is known as a Skyrmion. The Skyrmions are solutions to a fo
dimensional (static) Skyrme model which is a model for element particles in the low-enéegyive theory of the strong
interaction. However, no analytic solutions of Skyrmion have been found yet, the numerical solutions are only known. Finc
proper solutions of Skyrmions is a long-standing problem. There are several directions to construct solutions. For exan
the rational map ansatz provides a good approximation to the Skyrmion solutions. Alternatively, there is another promi
approach to Skyrmions known as an Atiyah-Manton construction. The Aityah-Manton construction gives well approxima
static Skyrmion solutions from the holomomy of the Yang-Mills instantons.

We sometimes consider extra dimensional models, for example the Kaluza-Klein theory, the brane world scenario, the
theory and others, to solve some modern physics problems. Hence, it is natural that we consider instantons and Skyrmic
higher dimensions. Indeed, several kinds of higher-dimensidriastantons’ were proposed, and these have been studied in
various contexts. Similary it is interesting topic that we study generalization of construction methods of instantons and Skyrm
in higher dimensions. This paper treats mainly the higher-dimensional ADHM construction of self-dual type instantons and
Atiyah-Manton construction of higher-dimensional Skyrmions.
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Introduction

This paper discuss about instantons and Skyrmions in higher dimensions. Particularly we attempt the systematic construct
the instantons and the Skyrmions in dimensions higher than four.

The original instantons are defined as topological solitons of pure Yang-Mills theory defined in four-dimensional Euclide
space. Yang-Mills theory is a gauge theory based on the compact, reductive Lie group, and is the basis of our understal
of the Standard Model of particle pysics. This idea can date back to the attemption of unified with the general relativity
electromagnetism by H. Weyl in 1918 [1]. The original Weyl idea is that “the physical laws is invariant under the change
scale (or “gauge”) and have also a local symmetry of general relativity” (This is the original of the name “gauge theory
Unfortunately this original idea did not work well, but recently gauge theory can be regarded as the expansion of this idea tc
internal space. In 1954, C. N. Yang and R. Mills first introduced a non-abelian gauge theory as a model of the SU(2) symn
group on the isospin doublet of protons and neutrons [2]. As the same time, W. Pauli, A salam and R. Utiyama independ
introduced a non-abelian gauge theory respectively. Particularly the theory that was introduced by R. Utiyama was genere
gauge theory including the other non-abelian gauge groups [3], and his theory also descript general relativity by the frar
gauge theory. In 1961 S. L. Glashow discovered a way to unifine with the electromagnetic ans weak interactions [4]. In 1
S. Weinberg [5] and A. Salam [6] incorporated the Higgs mechanism into Glashow’s model, giving it its modern form. Tl
electroweak unified theory is descripted by a SU{2)(1) gauge theory, is called as Glashow-Weinberg-Salam theory. The
strong interaction is described by a SU(3) gauge theory, and the SI§B)2) x U(1) gauge theory that direct combine this
SU(3) gauge theory and the electroweak unified theory is know as the standard model of particle physics. These three f
electromagnetic, weak and strong interactions, can be described by the gauge theories, thus we naturally consider that
forces can be merged into one single force, namely a one larger gauge group. This attemption is called as a Grand Uni
Theory (GUT), and various GUT models are proposed.

The Yang-Mills theory describe the interactions, hence the solutions to the Yang-Mills theory are important to underst
the behavior of the gauge bosons, namely the interactions. Instantons are one of the classical solutions to the Yang-Mills tt
and are the solutions of the minumum action in the four-dimensional Euclidean space. The physical motivation for conside
four-dimensional Euclidean space is that in quantum field theory #1)f8imensional Minkowski space-time one is led to
the computation of path integrals which need to be analytically continued in order to be well defined. The reason clas:
solutions are important is that they dominate the path integral, and in particular the instanton solutions generate non-perturt
guantum €ects. The instantons are also topological solitons which are stable, particle-like objects, with finite energy an
smooth structure. A salient feature of the instantons is that there is systematic construction of solutions, known as the AC
construction which is introduced by Atiyah, Drinfeld, Hitchin and Manin [7]. We usually need the solve pafiigabkdtial
equations (PDESs) to obtain the instantons, but when using the ADHM construction therffige 8uonly solve algebraic
equations instead of PDEs. The ADHM construction also reveals @elKquotient structure of the instanton moduli space and
provides the scheme to calculate the non-perturbative corrections in the path integral.

One of other topological solitons is known as Skyrmions. The Skyrmions are solutions to an (static) Skyrme model wt
was proposed by T. Skyrme in 1962 [8]. Skyrme believed that the nucleons (protons and nuetrons) in a nucleus were movi
a nonlinear, classical pion medium. This made him reconsider the pion interaction terms. Symmetry arguments led to a p:
ular form of Lagrangian for the three-component pion field, coresponding to the spinlesszgions £°), with a topological
structure which allowed a topologically stable soliton solution of the classical field equation, distinct from the vacuum. T
model is the Skyrme model, and this Lagrangian is essentially a one-parameter model of the nucleon. Fixing the parametel
proton radius, and also gives all other low-energy properties, which appear to be correct to about 30% (which compared
experiment values) [9]. It is this predictive power of the model that makes it so appealing as a model of the nucleon. Altho
it is hard to generally solve the equation of motion of the Skyrme model, there are some methods to lead a good approxim
of the Skyrmions. One of this methods is an approach that using the holonomy of the instantons, known as an Atiyah-Ma
construction [10]. The Skyrmions from the instantons hold some moduli pamameters, thus it is advantageous for study
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behaviour of the Skyrmions.

We sometimes consider extra dimensional models, for example the Kaluza-Klein theory, the brane world scenario, the M-
theory and others, to solve some modern physics problems. Hence it is natural that we consider the topological soliton in
higher dimensions. Indeed, several kinds of higher-dimensional “instantons” were proposed, and these have been studied in
various contexts. Similary it is interesting topic that we study generalization of construction methods of topological solitons in
higher dimensions. This paper treats mainly the higher-dimensional ADHM construction of self-dual type instantons and the
Atiyah-Manton construction of higher-dimensional Skyrmions.

This paper is organized the two parts, the first part is about the ADHM construction and instantons, the second part is about
the Atiyah-Manton construction and Skyrmions. These parts contain the two chapters respectively, the firsts are reviews in usual
four-dimensions, the seconds are discussion in higher dimensions. Contents of the each chapter are summarized at the beginning
of each chapter.
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Chapter 1

In four dimensions

In this chapter, we give a review on the ADHM construction and the instantons in the usual four dimensions.

The instantons in four dimensions are defined as solutions to the (anti-)self-dual(ASD) eduatien, F. HereF is the
field strength 2-form of the gauge field with a gauge gr@iand the symbokg is the Hodge dual operator ohdimensional
Euclidean space. It is well known that instantons play important roles in the study of non-perturfiatit® ia gauge theories
[11, 12]. Through the Bianchi identity, instantons are solutions to the equation of motion in the four-dimensional pure Ya
Mills theory. The instantons are, moreover, characterized by the homotopy mi(E) therefore we can classify these by the
second Chern numbep = 8_71rz fTr[F A F]. Of particular importance for the instantons is its systematic generation methoc
of solutions, known as the Atiyah-Drinfeld-Hitchin-Manin (ADHM) construction [7]. The ADHM construction algebraically
constructs whole the instantons in four dimensions, and the quaternion plays central roles on this algebraic side.

Itis well known that the instantons are related to other lower dimensional solitons. For instance, a caloron is the soliton s
tion that we take a periodic direction in the instanton [13]. The dimensional reduction of the ASD equation to three dimensi
leads to the Bogomol'nyi equation, and the Bogomol’nyi-Prasad-Sommerfield (BPS) monopoles are defined as the solutio
this equation [14]. In this paper, monopoles mean the BPS monopoles. There is the systematic construction, which is simil
the ADHM construction, of the monopoles and the calorons. This construction is called the Nahm construction [15]. In three
mensions, there is an another soliton, known as Skyrmion, which is the solution of the static Skyrme model. The Atiyah-Mar
construction produces well-approximated solutions of the Skyrmions from the instantons [10]. An higher-dimensinal calo
and an Atiyah-Manton construction are discussed in the below chapters.

The organization of this chapter in as follows. Section 1.1 is introduction of the Yang-Mills model and SU(2) instantor
Section 1.2 is reviewed the ADHM construction of the instantons with U(2) gauge group.

1.1 Yang-Mills model and instanton in four dimensions

The action of the (pure-)Yang-Mills model is given by
1
S=-3 fTr[F A #4F], (1.1)

whereF = %Fﬂvdw AdX is the field strength 2-form of the gauge field with a gauge gG@md=, is the Hodge dual operator
in four dimensionsF,, is defined byF,,, := d,A, - 3,A, + [A,,A], andA, is the anti-Hermite gauge fieldy, = —A,) which
takes value in a Lie algeb@. If we choose the Hermite gauge fielﬁf,(: A,) then the definition of field strength is replaced to
F. = 9.A, — 8,A, — i[A,, A]] and the action cagicient signature is replaced 1 instead-df. The Lie algebrgz is associated
with the non-Abelian gauge group and the greek indicas, v, - -- = 1,2, 3,4 are the four-dimensional time-space indices. The
Euler-Lagrange equation of (1.1) called as a Yang-Mills equation is

D,F* = 8,F* +[A,, F*] = 0. (1.2)

In the case of Hermite gauge, we have to replace the anti-commutativeAgrit{] to —i[A,, F*]. The Yang-Mills equation is

a nonlinear partial dierential equation, thus it is afficulty which we solve to the Yang-Mills equation analytically in general.
In more detail, when the basis manifold is Minkowski space-times then the Yang-Mills equation becomes the hyperbolic t
partial diferential equation, and it is known that in mathematical sense the hyperbolic figrewtial equation is very flicult
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6 CHAPTER 1. IN FOUR DIMENSIONS

to solve. On the other hand, when the basis manifold is Euclidean space the Yang-Mills equation becomes the elliptic type
differential equation, and the elliptc type equation is slightly easy than the hyperbolic type equation.

Instanton is one of the solutions to the Yang-Mills equation (1.2) in the four-dimensional EuclidearRép&de note that
we discuss the only Euclidean spaces in the following, so we ignore the position of space indices (i.e. upper indices are same
means as down indices). In Euclidean space, the Yang-Mills equation is elliptic type equation. Stillfficidtdo solve the
Yang-Mills equation because it is the second order partiBidintial equation. On the other hand, an ASD equation is first order
differential equation, thus we often solve it. The ASD equation is given by

F,uv = £ ¥y F/,lV? (13)

wherex4F,, is the Hodge dual of the field strength which is defined:ify,, = %gwp(,FP‘T (&= #4F = x4F,dX¥' A dX). We
sometimes call this equation that is positive signature as the self-dual equation. On the other hand, this equation that is negative
signature as the anti-self-dual equation. Instantons are defined as the solutions to the ASD equation (1.3), and are solutions to
the Yang-Mills equation (1.2) through the bianchi identity:

D, #4 Fuy = 0, (1.4)

This equation is an identity equation, thus the solutions to the ASD equation (1.3) automatically satisfies the Yang-Mills equation
(1.2).

In particular importance, the instantons give the minimum action of the Yang-Mills model (1.1). The Bogomol'nyi comple-
tion of the Yang-Mills action is

S:—%fTr[(F:L“F)ZiZFAF]2¢%fTr[F/\F], (1.5)

where we have defined
(F ¥ #4F)? = (F 7 %4F) A %4 (F T #4F). (1.6)

The Bogomol'nyi bound of the action (1.1) is saturated when the solutions satisfy the ASD equation (1.3). Then the action is
bounded from below b = 3 fTrF A F = +47%Q. HereQ is the second Chern number:

Q= —% fTrF AE. (1.7)

Therefore the instantons are classified by the second Chern number and the Chern number is sometimes called as instanton
(topological) charge or instanton number. It is particularly importance that the homotopy of the gauge§&)up associated

with the number of the instanton variety. For example, when the rank of the (special) unitary gaugélgsoope then the
homotopy group became triviak3(U(1)) = 0, hence the instanton (that is topological soliton) of U(1) gauge group does not
exist. We are intersted in instantons that are characterized by the instanton number, namely instanton becomes the topoligical
soliton, thus we consider the non-trivial homotopy group. The some examples of the non-trivial homotopy groups for classical
groups are

73 (UN)) = 73(SUN)) =Z, N> 2, (1.8a)
73(SO(4) = Z® Z. (1.8b)

In the case ofr3(G) # 0, the second Chern number is integer and the instantons with the Gaaigecompletely classified by
this integer number. The solution to self-dual equation is called as instanton and this instanton charge is positive. On the other
hand, the solution to anti-self-dual equation is called as anti-instanton and this instanton charge is negative. The instanton has
the property of the self-duality to the gauge field strerfgtiNext we consider this property on thefdrential form.
In four-dimensional Euclidean space (which metrid = o,y dxdx’), the action of the Hodge dual operator with 2-from
is
x4 (dX¥ A dX) = %s‘”"”d)(’ AdX. (1.9)

Therefore the operator that the Hodge dual operator acting twice is the identity oﬂeraﬁoh 1. Hence the Hodge dual
operator is the automophism of the 2-form linear spa®@ ;R*). Now T,R* means the tangent spacexa R andT;R* means

INote that the Hodge dual operator is dependent on the space metric. For example, the twice Hodgriduhk four-dimensional Minkowski space
(sig(= + ++)) becomes = —1, and in the four-dimensional hyperbolic space (sig(++)) becomes? = 1.
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the dual tangent space on For this reason andj = 1, the 2-form linear spac&?(T;R) is able to be direct sum denompose
with the eigenspace that the eigenvaluels

AX(TARY) = A2(T;RY) @ A%(T;RY). (1.10)

whereA2(T;R%) = {w e A(TIRY | xqw = tw}. Therefore the ASD equation means that the self-dual or anti-self-dual par
of the field strengttF € A%(T;R%) is vanished. In mathematically, this fact means that the gauge field can be written as tl
framework of twistor theory. This framework was first introduced by Ward [16], who demonstrated that the twistor transform
Penrose could be used to provide a correspondence between instantons and certain holomorphic vector bundles over the
space. There are two alternative methods for constructing the appropriate bundles; the first involves obtaining the bundle
extension of line bundles and leads to the Atiyah-Ward construction [17], whereas the second is the method with using mo
known as the ADHM construction [7].

1.1.1 SUy2)instantons

In this subsection, we review some instantons with the SU(2) gauge group.
First of all, we introduce the 't Hooft symbol which play central role in SU(2) instantons:

ny) = ele —ele, 1) =66 e, (1.12)
wheree, € are defined by
€, = Gualz — (6,0, €, = Gualy + 6,0, (1.12)

Herei = 1,2, 3 ando are the Pauli matrices. The most important property of the 't Hooft symbol is that it satisfies the AS
relation:

L1
77;(;/) = izgﬂvponffy)~ (113)

The parameters that are included in the instantons are called the muduli parameters, and the number of these paral
depend the instanton number and the gauge group. The dimension of the instanton moduli space, namely max moduli nu
is calculated by using the result of the Atiyah-Singer index theorem [18, 19]. In SU(2) (or U(2)) gauge group, the full instan
moduli number is B - 3.

BPST instanton

The Belavin-Polyakov-Schwartz-Tyupkin(BPST) instanton [11] is most simplify instanton. The gauge field of the BPST inst:
ton is given by

_ 1 1.14
A/J 2/12 + ”)?”277;11/ > ( )

where we have defined = x* —a, a* € R is the position of the instanton,e R is the instanton size an&||> = (x* — a) (X, —
a,). This field strength is evaluated to
2 ()
= o2
(A2 +1IX112)
For (1.13), the BPST instanton’s field strength is manifestly satisfies the ASD equation (1.3).
The topological charge, namely the second Chern number (1.7) is rewritten as

1 1 (4 |1y
Q = _Q TrEAF = _Q d*xTr z 8HVF‘TFHVFP0' s (116)

thus the topological charge of the BPST instanton becomes

Fuv (1.15)

_ 1 1 d4 /12 2 (i) (i) _ 171' I _
Q = —QZ X m Tr [sﬂVpO'nﬂv T]po_] = 1871'24_]-%4. 4.2 =+1, (117)

where we Use,,,, 1) = 4 411,

The BPST instanton has four space coordinate moduli parametensd one size moduli parametgr thus the moduli
parameters of the BPST instanton total to five. This number is same as 1-instanton full moduli parame&et &), hence
l-instanton is whole representation by the BPST instanton.
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't Hooft and JNR k-instanton

When we consider a multi-instantons we usually use the following ansatz:
1m
A, = =00, Inp(X). (1.18)

This ansatz is callled as the Corrigan-Fairlie-'t Hooft-Wilczek(CFtHW) ansatz. Substituting this ansatz into the ASD equation
lead to the four-dimensional Laplace equation:
9,0,0(X) = 0. (1.19)

There are two types of the well-known multi-instanton solutions to this equation, known as 't Hooft instantons [12] and Jackiw-
Nohl-Rebbi(JNR) instantons [20].
The 't Hooft k-instanton is

p(x) =1 Zﬂm% (1.20)

wherexs, = x* — & and||%.|> = %%, The moduli parameters of the 't Hooft instantons have the simple physical meaning:
Am € R denotes each instanton size ade R denotes each instanton position. Note that the 't Hooft one-instanton is singular
at the instanton position:

2
singular _ (+)6 In /1_ 1.21
Aﬂ 4 ,uv ( ||)~(||2 ’ ( )

while the BPST instanton (1.14) discussed in the previous subsubsection is non-singular. These solution are connected by the
following singular gauge transformation:

—X

Aﬂnon—singular: glAilngulargll + glﬂygll’ g1 = ”)’2”2, (1,22)
wherexX' = (¥ — a')e,.
The JNRk-instanton which is another solution to (1.19) is
k /12
X) = oL 1.23
p(¥) ;0 EATE (1.23)

The moduli parameters of the JNR instantons do not have the simple physical meaning.

1.2 The ADHM construction in four dimensions

In this section, we give a brief review on the ADHM construction of instantons in four dimensions. We consider of the gauge
group U(2).
The four-dimensional Weyl operatay,) is defined by

Ay = C(x® 1) + D, (1.24)

whereC and D are quaternionick(+ 1) x k matricesk is the instanton charge and= x‘e,. Herex* (u = 1,2,3,4) is the
Cartesian coordinate of the four-dimensional Euclid spages (i, 12) is the basis of the quaternion ang are the Pauli
matrices. The Weyl operatav,) is assumed to satisfy the ADHM constraint:

A-(i-“)A@) =1L ®E, (1.25)

whereA is the quaternionic conjugate afs) andEy is an invertiblek x k matrix.
In or er to construct the instanton solution for the gauge #elk), it is necessary to find a quaternionic£ 1) column
vectorV(x) obeying the Weyl equation:

AlpV(X) =0, (1.26)

whereV(x) is the zero-mode normalized ¥§(x)V(x) = 1. The gauge field\,(X) of instantons is given by

ALX) = VI(08,V(X). (1.27)



1.2. THE ADHM CONSTRUCTION IN FOUR DIMENSIONS 9

Using the expression (1.27), the field strength is calculated such as
Fur = 0,V (Losa = V),V = (u © v). (1.28)

Now use the completeness relation:

1osok — VVI = A(4)(A(T4)A(4))-1A§4), (1.29)

then (1.28) is rewritten as
Fuv = VIC(8, ® L)(AlAw) (€] ® L)CTV = (u & v)

= ViC(AAw) ™ (1)) ® L) CTV, (1.30)
where we have used the ADHM constraint (1.25). Now we recall that the 't Hooft syn7b15datisfies the anti-self-dual relation
(1.13). Therefore the field strengiy, associated with the solution (1.27) automatically satisfies the ASD equatios =4 F.

For the above discussion, we find that a key point of the ADHM construction is that the 't Hooft swfﬁbalhich is
constructed from the base; satisfies the ASD relation. Therefore if we formulate the ADHM construction of instantons in
higher dimensions then we need to find the basis that satisfies the ASD relation in higher dimensions.

Let us analyze the ADHM constraint in more detatil. For (1.24), the ADHM constraint (1.25) becomes

(X' @ L)C'C(xe L) + (X' ® 1,)C'D + D'C(x® 1) + D'D = 1, ® Ex(X). (1.31)
Since the ADHM constraint hold for all € R, this constraint must be satisfied by the each order terr of
(X' ® 1,)CTC(x® L) =1L, ENGR),
IXeRY, Ap(NAG() = LB E(X) — xeR’, {(X®1)C'D+D'C(xeL) =1,®2E7(X), (1.32)
DD =1L, ®EY.

First, we consider the case of the second order t&rm
"xeR%, (X ®@L)CTC(x®@ L) = L EP(X®) = "X, X eR, *¥x'(e)®L)C'Cle, ® L) = ax*1, ® EV
= (€,®1L)C'C(e, ® L) = (adn 12 + B,y) ® EY, (1.33)
whereB,, is an arbitrary anti-symmetric tensBy, = —B,,, ande € C. What in the form ofC’C that satisfy (1.33)? We give

this answer in the following lemma.

Lemma 1.2.1. . - ~
(€, ®L)C'Cle, ® 1) = (a0, 1w + By) 8 EY e C'C=1,0EY. (1.34)

Proof. <). _
Suppose tha’C = 1, ® EY, then

(6 ® L)L ®EN(e, ® 1) = €le, ® EL) = (6,012 + 1) /2) ® EL. (1.35)

Recall thabh(j; is the anti-symmetric tensor by the definition (1.11), hence this assertion has proven.

=).
Since the r.h.s. is written by the tensor product, the I.h.s. also have to decompose into the tensor @fadeck, ® Y.
Now X is 2 x 2-matrix andYy is k x k-matrix. Hence the I.h.s. on the tensor product becomes

€\ X2€, o« a1z + By (1.36)
For the assumptioB,, = —B,,,, we haveg]Xe, o ad,,1, + A, = ad,,12 — B,,. Therefore we obtain the following relation:
€\ X2€, + /X6, o< 6,15, (1.37)
Now we recall thatje, + /g, = 26,15, thusX, = 1, (8 € C). Therefore
C'C=10 Y%, (1.38)
whereVy := BYi. Substitute this result into the |.h.s. of the right equation in (1.34), and we ofitairE(". QE.D.
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Next we consider the case of the first order tefm

"xeR?%, (xX' ®L)C'D + D'C(x® L) = 1, ® 2EP(x)
= "x' eR, X'((€®L)C'D +D'Cle, ® L) = ¥'1® 25
— (g,®1L)C'D+D'C(e, ® L) = 1, ® 2E7), (1.39)

where we defin€?) by E”(x) = x'E{2). The conditiont tha€'D satisfies (1.39) is given by the following lemma.
Lemma 1.2.2. Let Y be kx k Hermite matrix, then
(€,®1)C'D+D'Cle,® 1) = 1,® 2Eﬁ§3 — C'D=¢,® VY, (1.40)

where Y = $E®).

Proof. <).
It can be easily shown by substituting the r.h.s. equation in (1.40) into the I.h.s. equation.
€ eu)(eeY)+EeY M) e ol) =¢ce oY +ee,oY " =(de +ee)0Y =25,L,8Y". (1.41)
=).

Because of the same reason for the proof of lemma 1@, have to decompose tox22-matrix X andk x k-matrix Y:
C'D = X®Y. Now Y is arbitrary complex matri%¥ € GL(k; C), thusY is classified to any of the Hermite, anti-Hermite, or
non-Hermite. We consider the each cas# af the following.

First, letY be non-Hermite then

€ ol)XeY+X oYi(e,ol)=eXaY+Xe aY'. (1.42)
U U U ql

This result accords witth, ® E(ZZ if and only if the cases ok = 0 orY = 0, however this assumption is not suitable. Therefore
we reject the assumption thétis non-Hermite.
Next, letY be Hermite then

€el)XeY+X Y (gel)=eXeY+XeaY=(X+Xe)aY (1.43)

This result accords with, ® E(zz ifandonlyif X =¢,, Y =Y".
Finally, letY be anti-Hermite then

€el)XeY+X oY (gel)=eXeY-XeaY=(X-Xe)eY (1.44)

This result accords with, ® E(Z) if and only if X = ie,, Y = Y”. Now, we replace the imaginary unit &hfor onY (ie, — e,
andY” — iY"), then anti- Hermlte case is essentially same as the Hermite case.
Therefore we have the result tHatD = e, ® Y* andY" is Hermite. Finally, compare this result with the I.h.s. equation,

and we obtairy# = §* El(fv) QE.D.

Finally, we consider the case of the zero order tefrbut this is most simplify form already.
Therefore we decompose the ADHM constraint (1.25) to threelependent conditions:

c'C=1,&EY, (1.45a)
C'D=¢®E?, (1.45b)
D'D=1,0E®, (1.45¢)

whereﬁfg is a Hermite matrix anél" = X?EX + 2x¢ El(fj +E®.
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Itis well-known that the ADHM data is more simplified by using the gauge freedom on ADHM data without loss of generali
[21]. The ADHM constraint (1.25), the Weyl equation (1.26), and the zero-mode nomari¥4tiba 1, are invariant under the
following transformation:

CHC =UCR, D> UDR, V-V =UV, (1.46)

whereld € U(2 + 2k) andR = 1, ® Rk € 1, ® GL(k; C). Using this U(2+ 2k) x GL(k; C) transformation, we can fix the ADHM
data to the so-called the canonical form:

Co (0[2]><[2k]) D- (S[z]x[Zk] ) (1.47)
Lo [2+2K]x[2K] Tr2Kx(2K

Here the matrix subscripa] x[b] means the matrix size, and the symBgi (2 stands fo(Sl [2IX[K] Sz[z]x[k]). In the canonical
form, the informations of the all ADHM data are included in the matri8eand T. Let us now rewrite thex-independent
condition for the ADHM constraint (1.45) in the canonical form. In this c&& = 1 = 1, ® 1, thus the condition (1.45a)
is automatically satisfied. The condition (1.45b) means that the n@tixis written withe,. In the canonical formC'D = T
thus (1.45b) becomes

T=e8TH (1.48)
whereT# is ak x k Hermite matrix. The condition (1.45c) is rewritten as
S'S+TIT=1,0EY. (1.49)
S'S is decomposed with,:
Sis; slis 14—il® —12-ilt
g - (Y171 192 _. B
ss_(stl s;sz)"e”@" _(Iz—ll |4+“3), (1.50)
where we definedt as
i < 1 o
1= E(s;sl +S1Sy), 12 = (8381 - Sisy),
i < 1 o
13 = E(S}Sl - S.S)), 14 = (5181 + S;So). (1.51)

Now we recall thag, := 84,1 — 6,04 andoioj = isijkok, (1.49) becomes
. - _ 1 : .
S’ S+TT=Lel*~icel +LeT'T! +io ®(§gijk[TJ,Tk] + [T, 7| = Lo E®
. 1 . . .
= ioi® (Eaijk[TJ,Tk] +[T, T4 - |') + 1L @ (THTH +1%) = L, EPY
1 : . :
= 5s”k[TJ,Tk] +[T, T4 -1'=0. (1.52)

This equation is usually called the ADHM equation. Therefore the ADHM constraint in the canonical form becomes the s
plified equation (1.52) and the condition of ADHM data (1.48). Note that there are residual symmetries that leave the canol
form (1.47) invariant. The transformations are given by

S, S, =QS,R THi> TH=RTHR (1.53)

where the indexr = 1,2, Q € SU(2) andrR € U(k). We sometimes call this residual symmetry as the gauge freedom of the
ADHM data.
The transformation of the zero mode that preserves the normalization conditiba 1, is given by

V(X) > V(X)g(x), g(X) € U(2). (1.54)

Note that this transformation is independent of the transformation (1.46). This zero mode transformation leads to a gauge
transformation through (1.27). Indeed the gauge field is transformed into

A e g (0AG(X) + g1 (08,9(X). (1.55)
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This transformation is same as the ordinary gauge transformation. Therefore the instantons that are produced from the ADHM

construction possess the unitary goup U(2). Hence, we note that the ADHM construction does not impose the speciality condition

on the gauge group in general, namely the gauge group is not the special unitary group SU(2). We can decompose the group U(2)

into the special group SU(2) part and U(1) part: UBU(2)< U(1). Here the symbok means the semidirect product of the

group. Therefore we usually must fix the element U(1) by hand when we consider SU(2) instanton in the ADHM construction.
There is a useful formula, known as the Osborn’s formula, to calculate the action density from the ADHM data. The Osborn’s

formula [22, 23] is

TrF,, F* = —9%6% In detE, ™. (1.56)

It can be easily shown that the indkxdenotes instanton number with using this formula. Using ASD equatiorE@%(do) =
)(zlk,

= 8 22 f d*x Tr [F F*] = ;rz f d*x 8°6% In detE, *
= 167 f dSLa,0°TrInEt = 1%”2 f dQsTrdy = k. (1.57)

Here f dQ3; means the three-dimensional spherical integration.

1.2.1 Some ADHM data with U2)

In U(2) gauge group, various ADHM data have been constructed in previous studies. In this subsection, we show some well
known ADHM data with U(2) gauge group.

BPST instanton

In thek = 1, the ADHM data in the canonical form is the simplest one:

(0 [ A1
c-(2) o-( %) (e
where € R is the size modulus araf € R is the position modulus of the instanton. The solution to the Weyl equation (1.26) is
1 /(%
V=—"— , 1.59
P (—ﬂlz) (159)

wherex’ = (x* — a“)ef, andp = 2% + ||X||>. We easily confirm that this ADHM data reproduce the BPST instanton gauge field
(1.14) by using (1.27).

't Hooft k-instanton
The 't Hooft ADHM data [7] is given by
T = diads,(-a}), S=1®(l 1 ... &), (1.60)

with & € R is the instanton position ant}, € R is the instanton size moduli respectively. The solution to the Weyl equation that
is associated with (1.60) is

1 -1z
= Vo |& ®diad;_, (prnst) (1.61)

whereg = 1+ Z',‘J:l & % = % — af and||X|? == %X (p is not summed).
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JNR k-instanton
The JNR ADHM data [24] is

_(Ll®A —a®A | _ (S%o®A) _ A
ho= (1z® 1k) Ok (diad;=1(—ap)) ‘( % )— % ®(diad;=1(>“d,;))’ (1.62)
whereA = (/11//10 /lk//lo), p = (X' — dp)e., ap = ape,, andX = diad,(%,). Herel, € R andaj, € R are moduli

paremeters. The JNR ADHM data is not in the canonical form and contain more moduli parameters than the 't Hooft one.
latter is obtained from the former by the lingi§ — o and1 — oo with fixedag/A = 1, thus, in this sentence, the INR ADHM
data is a generalization of the 't Hooft ADHM data. The solution to the Weyl equation is

1 -1
=7 diad;ﬂ(“;]"“z .gg®t,\), (1.63)

wheregp = 1+ % er():l( i )

il
A l1%pl2






Chapter 2

In 4n dimensions > 2)

In this chapter, let us consider higher-dimensional instantons and an ADHM construction of these instantons. The discussi
this chapter is based on [25, 26].

Naturally, we consider generalization of the four-dimensional instantons by generalizing the ASD equation to higher dimr
sions. There are several kinds of “instantons” in higher dimensions, and these have been studied in various contexts. One
main types of instantons is sometimes called a secular type instanton [27, 28]. The secular type instantons are the solutions
linear equatiorf,, = AT,,,-F*7,4 # 0, (u,v,p,0 = 1,...,d). Hered > 4 and the symbol ., is an anti-symmetric constant
tensor that respects subgroups of the §@prentz group. However, the Chern numbers that are associated with the secul
type instantons are not finite and quantized in general. In this sense, the secular type instantons are not topological soliton
ADHM construction of the secular type instantons m(4 = 1,2, 3,...) dimensions has been studied in [29].

On the other hand, we can consider the another type equation which is the straightforward generalization of the f
dimensional ASD equationE(n) = + x4, F(n). HereF(n) is the nth wedge products of the field strength 2-fofm This
equation is called therddimensional ASD equation and solutions to this equation are called ASD instantons. One of the m
important characters of the ASD instantons is that these topological charges, which are definedbtht@h@n number
Con = W fTrF(Zn), are finite and quantized when the homotopy group is non-trigigl:;(G) # 0. This type instanton

was firstly studied by Tchrakian [30},and he constructed a spherical symmetry $Di@stanton in 4 dimensions which was
generalization of the four-dimensional Belavin-Polyakov-Schwartz-Tyupkin(BPST) instanton. Furthermarelinmefsions,

an axially symmetric SOf#) one-instanton was presented explicitly in [32]. This instanton is the analogy of the axially symme
ric Witten solution in four dimensions. The existence of axially symmetric 80tdlti-instantons has been proved analytically
in [33, 34]. However, in 4 (n > 2) dimensions, a SO instanton of which symmetry less than axially symmetry does not exist
[35]. For this reason, we propose the following question. Can we construct higher-dimensional instantons of which other g
groups and symmetries? We will consider an approach of a higher-dimensional ADHM construction to elucidate this quest
In this paper, we treat only the case of which the base manifold is Euclidean&fadéote that there are the ASD instantons
on other base manifolds also, for instance, the case of complex projective@paees discussed in [36].

In this chapter, we mainly consider an ADHM construction of thedimensional § > 2) ASD instantons with the unitary
gauge group WY{). The first non-trivial casen(= 2), the eight-dimensional ADHM construction, has been studied in [25]. The
4n-dimensional ADHM construction is generalization of the eight-dimensional one. We will show that this is a general schem
construct the ASD instantons and the known one-instantons dfirdensions can be reproduced from this schénoreover,
we will discuss higher-dimensional multi-instantons by introducing specific ADHM data which solve ADHM constraints, ar
we mention calorons and the monopole limit in higher dimensions.

The organization of this chapter in as follows. Section 2.1 is about an ASD type instantengiinehsions. In this section,
we introduce a generalized Yang-Mills action which leads the 4n-dimensional ASD equation asttinaefhsional BPST one
instanton. Moreover we discuss a generalization of the 't Hooft symbol in four dimensions, called asdireedsional ASD
tensor which plays central rules of the following discussions. Section 2.2 is discussedmmnefisional ADHM construction of
ASD instantons with U{) gauge group. We find that, in higher dimensions, there are two type ADHM constraints on the ADHI!
data. The one is straightforward generalization of the four-dimensionnal one, while the another, essentially a new constraint
comes from the non-linearity of the higher dimensional ASD equations. Section 2.3 is about higher-dimensional ADHM d
with U(22"-1) gauge group. We consider the generalization of the four-dimensional ADHM data, namely an BPST type,

1The special case of = 2 was studied independently in [31].
2Note that the gauge group of this reproduced one-instanton expand to the unitary grétg)u(2

15
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Hooft type and a JNR type data. However we show that these multi-instanton ADHM data are well-defined only if we assume
that the each single-instanton well-separated. In section 2.4, we show some calculations in more detail. Subsection 2.4.1 is
about the dierence of the formulations about the Hermite or anti-Hermite gauge in higher dimensions. Subsection 2.4.2 is
about the higher-dimensional ASD tensor. In this subsection, we prove some properties, which is used in this paper, of the ASD
tensor. In subsection 2.4.3, we prove the existence of the inverse maErﬁj? efhich is appeared in the section 2.2. Subsection
2.4.4. is detailed calculation that leads an approximate charge density of 't Kleofg, 3 instantons. Section 2.5 is about

the Clifford algebra and the 4n-dimensional ASD tensor. The 4n-dimensional ASD tensor which is introduced in section 2.1
is constructed from the Glord algebra. In this section, we discuss the properties of tHeoftlialgebra and give the explicit

matrix representations of the @tird algebra namely the ASD tensor. Section 2.6 is discussed about the properties of a higher-
dimensional ADHM equations, and we explicitly lead a eight-dimensional ADHM equations with U(8) gauge group. Section
2.7 is about calorons, sometimes called as periodic instantons , in higher dimensions. It is known that the Harrington-Shepard
caloron in four dimensions is leaded by the 't Hooft multi-instantons that are periodic in one of the four coordinates. We consider
the same method to apply in higher dimensions.

2.1 (Anti-)self-dual instantons in4n dimensions

In this section, we study ASD instantons in-dimensional Euclidean space with the flat metric. Thed#nensional ASD
equation is defined as the generalization of the usual four-dimensional ASD equation (1.3):

F(n) = + x40 F(n), (2.1)

where =y is the sh-dimensional Hodge dual operatdt(n) = F A --- A F (n times) andF = %vadw A dX is the gauge

field strength 2-form of which component is definedfy = d,A, — d,A, + [A., A)]. HereA, is the anti-Hermite gauge field

(Aj; = —A,) which takes value in a Lie algebg The Lie algebras is associated with the non-Abelian gauge gr@ipnd

the greek indiceg,v,--- = 1,2,...,4n are the #-dimensional Euclidean space indices. The component expression of the ASD
equation (2.1) is L

Flusz - - - Fugnspzn] = % (2n)! Epusptz.cpizn sptzvva.van-ava Fyiva - - - Fran vy (2.2)

WRET€ €111, pion_1pzomvava..van1van 1S the anti-symmetric tensor innddimensions and the bracketifs ... uzn] means the anti-
symmetrization of indices with the weight/(En)!. The 4n-dimensional ASD instantons are defined as the solutions to the
4An-dimensional ASD equations (2.2). As in four dimensions, the square ofrtu#gnZensional Hodge dual operator on Eu-
clidean space becomes the identity opera&ipl: = 1. Hence the @form linear dual tangent space®(T;R*") is able to
decompose with the eigenspace that the eigenvalug:is

AP(TR™) = AZ(TZR™) © AZ(TZR™). (2.3)

where we have definet?"(T;R*") := {w € AP(T;RM) | #4n 0 = iw}. Therefore we can always classify the-drm as the self
dual or the anti-self dual. This fact guarantees that tiidithensional instantons are able to be classified as self dual instantons
or anti-self dual instantons.

The action that gives thenddimensional ASD equation (2.1) is given by

S = (1)'Ma f Tr[F(n) A +anF(n)] . (2.4)

We call this action as the generalized Yang-Mills action. H&ds the normalization constant im4limensions which will be
determined on the last in this section. If we choose the Hermite gauge Aigld @) then the action cd#cient signature is
replaced 1 instead of-()" (see subsection 2.4.1). We easily show that the Bogomol’nyi completion of the action is

S= (—l)”% fTr [(F(n) F #40F ()2 £ 2F(2n)] > i(—l)“anTrF(Zn), (2.5)
where we have defined
(F(N) F #a0F(M)? = (F(N) F #40F (M) A 50 (F(N) F 547 F () . (2.6)

Therefore the Bogomol'nyi bound of the action (2.4) is saturated when the solutions satisfyditaehsional ASD equation
(2.1), and then the action is bounded from below by thét?Chern numbe8 = £(-1)"N, fTrF(Zn).
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The sA-dimensional Belavin-Polyakov-Schwartz-Tyupkin(BPST) type instanton was discussed in [30, 31, 37]. We revi
this type instanton in the following. The gauge field of the BPST type instanton is

1 ¥ oo

AuX) = T ETRE (2.7)

where we have defined = x‘—a, & € R is the position of the instanton,e R is the instanton size anid|? = (x*—a*)(X,—a,).

The symbolszv) is a f-dimensional ASD tensor, and this is an analogy of the 't Hooft symbol in four dimensions.
The ASD tensor in d4 dimensions is given by

) =ele, - ele, I() =6 -ee, (2.8)

with g, ef, which we call the ASD basis inmMdimensions, are defined by

€, = Gurloms + 6,0, € = Gloms + 6,0, (i=1....4n-1, #=4n), (2.9)
wherel'™ are 2"1 x 221 matrices that satisfy the relatiqﬂi(*),l“gi) } = —26j1,21, and 1= 1 is the identity matrix. The
element’™ is defined byr™ = (1 + w)I' and we choos&™ that satisfies the relatio’l” = —I'"). Here} is the matrix

representation of the (4- 1)-dimensional complex Gfiord algebral'i € Cé4n-1(C), andw is the chirality element which is
defined by
w = (—1)”*11"11"2 e F4n_1. (210)

The explicit matrix representation of then(4 1)-dimensional complex Gtiord algebras can be found in subsection 2.5. The
ASD basisg, is the generalization of the quaternion basis in four dimensions and is normalize{l@éﬁ]ﬁ: 215,,. The
relation of convenient for calculations is

.6 +e€ = ee +ee, = 20,lm. (2.11)

The ASD tensoE,(fV) satisfies the &-dimensional ASD relation:

+ + 1 + +
E(—) z(—) — 2(—) E(—) (212)

[uape * ° ° “uon-1pon] + (2n)| .. pan-14nV1V2.. Van-1von Vive * t Svan-1von®

where the upper script sign Eﬁ) corresponds to the sign in the r.h.s. of (2.12). For later convenience, we calculate the followir
guantities:
() ()

+ + 2
Uity Sflan-aptan ‘9#1#24~~#4n71u4n2(1;) . -Egr),,l)(m) = i(_ 1)n2 n8ﬂ1#2~~~#4n—1#4n Loon-1. (2-13)

These results are proved at subsubsection 2.4.2 in p.30.
The field strengtli,, of the BPST type instantons is evaluated to be

/12
Fo=-— "3 2.14
M2 IR (219
Then the field strength (2.14) manifestly satisfies thaldnensional ASD equation (2.2) by using (2.12). The ASD teﬁ$ﬁr
satisfies the commutation relation:
[szv), z,(f)] = 4(6,,Z8) - 6,622 + 6,T8) - 6,,5%)). (2.15)
Hence, we find tha)‘:,(fv) is the spinor-representation of the S@)4Lie algebra. Therefore the gauge group of theddmensional
BPST type instanton is the special orthogonal group 8D44d its homotopy group i84,-1(SO(4)) = Z & Z. Note that it is
suficient that the homotopy group contains at least@tfigctor to classify instantons by the integer topological charge.
Next, we determine the normalization constafit This is defined by the condition that the topological charge of the BPST
instanton (2.14) becomes one. The topological ch@géthe s-dimensional instantons is defined by theth Chern number:

1\
Q="M LM TrE(2n) = (-1)"Nq " d*"xTr [(E) Epspty.-ptan-ptan Tpiaptz -+ - Fptan i | - (2.16)
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We easily calculate the topological charge of the BPST type instantons (2.14) by using (2.13). The result is
1 /12 2n
_ 4
Q= (—1)nNnﬁ J}; . d nx(m) Tr [8#1#2~~~l14n71l14n2£l11/)12 e Zﬁflw‘xn]
/12 2n
=N d*'x | —————==| - x@4n)12"1!
" fR ((ﬁ2 + ||x||2)2) “n

00 l 2n
— 1 2n-1
+(4n)122" A, fs L dQuns fo dr(—(1+r2)2)

22(4n)'na?" )
- +— = | n
g 1) BN 20A, = (20120 Ao, (2.17)

whereB(2n, 2n) is the beta function and we have used the following relations:

M2

dQm g = ———r™7, 2.18a
sm-1 mt F(%‘ + 1) ( )
0o rén-1 /2
f dr—— = f co"gtarf™ 9. cos?0dy ).r =tand
o @A+r)"™ Jo
7(/2 1
= f cod™tgsin*1odg = EB(Zn, 2n), (2.18b)
0
_ T(@r(b)
B@b) = oy (2.18¢)

We define that the topological charge of the instantons is a positive number when the instantons satisfy the self-dual equation,
i.e. the plus sign in (2.2). Therefore the-dimensional normalization constantg is determined to be

1

2.2 U(N) ADHM construction in 4n dimensions (1 > 2)

In this section, we study an ADHM construction of the ASD instanton in thdithensional Euclidean space with the flat metric.
In the following, we choose the anti-self-dual solutions to the equation (2.2) and we use the matrix representationftirithe Cli
algebraC¢4,-1(C). This explicit form can be found in subsection 2.5. We first introduce thdishensional Weyl operator:

A=C(x®1L)+D, (2.20)

wherex = x‘e,, the symbol® means the tensor produ@,andD are (N + 22-1k) x 22"~k constant matrices which are called
the ADHM data, and\ corresponds to the rank of the unitary group, we will show this fact for later. If we consider self-dual
solutions then we must choose the bﬁis;nstead ofe,. In the next section, we will show that the intedecorresponds to
the instanton number which is defined by thetB Chern numbek = |V, fTrF(Zn)|. Now we demand that the Weyl operator
satisfies the first ADHM constraint:

ATA = 1pn: @ ED, (2.21)

and the second ADHM constraint: 1
C'A(ATA) " A'C = 11 @ B, (2.22)

whereAT is the Hermitian conjugate matrix of, EI((l) andEI((Z) are invertiblek x k matrices. The first ADHM constraint (2.21) is

the natural generalization of the four-dimensional one [7]. On the other hand, the second ADHM constraint (2.22) is the analogy
of the eight-dimensional one [25]. In addition, the Weyl operator requires the non-degeneracy condition=r@ik *k, and

the existence of the inver&® (a=1,2)is guaranteed by this condition (see subsubsection 2.4.3). Her& maekns the rank

of the matrixA, and the non-degeneracy condition of the Weyl operator is satisfied if and only if the ADHN datsatisfy the
condition: rankC = rankD = 221k, For later convenience, let us analyze the ADHM constraints in more detail. For (2.20), the
first ADHM constraint (2.21) becomes

(x" ® L)C'C(x® L) + (x' ® L)C'D + D'C(x® L) + DD = Lo ® ED(X). (2.23)
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The ADHM constraints hold for alk € R*", hence we can decompose the first ADHM constraint to th@elependent
conditions:

C'C = 11 @ EMY, (2.24a)
1,2

C'D=e®EL?, (2.24b)

D'D = 11 ® E&?), (2.24c)

whereE{-?) is a Hermite matrix an&(” = x2E{"Y + 2x'E{-?) + E{*¥. These calculations are guaranteed by the lemma 1.2.1
and 1.2. 2 because the properties of ASD ba5|s which are only used in these proofs are the general results that are derive
Clifford algebra namely these lemma to be prove true in higher dimensions. Similarly, the second ADHM constraint (2.
expands to

C'C(x® 1) (1ot @ F)(X' ® 1,)CTC + CT'C(x® 1) (11 ® f)D'C
+C'D(Lon1 ® F)(X' ® L)C'C + C'D(Lym1 ® F)D'C = Lpon: ® EP(X), (2.25)

wheref-1 = E(l) When we discuss theindependent conditions of the second ADHM constraint, we can ignore it is
included inf because the matrik is already placed in the r.h.s. for the tensor product. For (2.24axand xx' = x?1,1, the
x? term in (2.25) automatically satisfies the constraint. Xhterms in (2.25) expands to

C'C(x® L) (121 ® f)D'C + C'D(1on1 @ f)(X' ® 1, )C'C
=X (e @ ELVTELY + g,6) @ ELPTENY). (2.26)
These terms satisfy the constraint forxalf and only if the following condition holds:
ECVTERD = ECAFENY. (2.27)
Next we consider tha&® term in (2.25). This term becomes

C'D(pm1 ® F)D'C = (81 + 25)/2) @ ELDFEL?, (2.28)

here we have usem;l,ei = O loma + EL;)/z. For this equation, we obtain the following condition for #¥germ:
- (1.2) ¢ =(12) _
) e ECITESY = 0. (2.29)

Therefore we obtained the tweindependent conditions of the second ADHM constraint, namely (2.27) and (2.29).

Let us show that how to obtain the gauge field of the anti-self-dual instanton from the ADHM data. Following the ADH]
construction in four dimensions [7], we first consider zero modes of the Weyl opeYatdhe null-space of the Hermitian
conjugate matrixA™ is N-dimensional, as it hadl fewer rows than columns. The basis vectors for this null-space can be
assembled into arl\(+ 22"-1k) x N matrix V(x), which is sometimes called the zero mode. This fact means that the zero mod
V(X) is the solution to the Weyl equation:

A'V(X) = 0, (2.30)

and the zero mod¥(x) is normalized ay/ "V = 1y. The zero mod&/ and the Weyl operatok satisfy the following relation
which is called the completeness relation:
Insomk — VVT = A(ATA) AT, (2.31)

We can easily prove this relation by usingh  22"-1k) x (N + 22"-1k) matrix W = (A V). Because of the non-degeneracy

condition, the Weyl equation (2.30) and the normalizatiwfiv = 1y, the columns ofV are linearly independent. Therefore
the matrixW is invertible, and the following equation is an identity equati®¢WW)-*W' = 1y,.21,. We can obtain the
completeness relation by expanding the I.h.s. térv' W)W with A andV. We employ the ansatz of the gauge figjdx)
is given by the pure gauge form:

A (%) = V(%9 V(X). (2.32)

Next we confirm that the field streng#),, from the ansatz (2.32) automatically satisfies the anti-self-dual equation (2.2)
For the Weyl equation (2.30) and the completeness relation (2.31), the field strength becomes

Fo = VIC (e, ® 1) (A7A) (€ ® 1) CTV - (u o ). (2.33)



20 CHAPTER 2. INAN DIMENSIONS N > 2)

Now we use the first ADHM constraint (2.21) then the factdiA)~! commutes with the base ® 1«. Hence the field strength
becomes
Fo = VC@ATA) ™ (20) ® L) CV. (2.34)

Therefore the multi-product of the field strengths is

Frss - - Fromn = (VIC(ATA) ™ (25), ® L) CTV) ... (VIC(ATA) (25, ® L) CTV). (2.35)

‘Ltz ‘Hon-12n
We order thaE,([V) ® 1, commute withC"VV'C in (2.35), thus we demand the following condition:
& ® L (C'VVIC) = (C'VVIC)e, ® L. (2.36)
Use the completeness relation (2.31) then the condition (2.36) is decomposed as
6, ®1L(C'C)=(C'C)e, L, & ®1L(CTAATA)?ATC) = (CTA(ATA)'ATC) g, ® L. (2.37)

For (2.24a), the first condition is automatically satisfied when the first ADHM constraint (2.21) holds. On the other hand, the
second condition is just the second ADHM constraint (2.22). We find that the condition (2.36) is satisfied when the first and
second ADHM constraints hold. Therefore, for the condition (2.36), the multi-product of the field strengths becomes

Frsie -+ g = VIC(A7A) " (200, ... 2 ®lk)CTV(VTC(ATA)flCTV)nil. (2.38)

Hap2 * M2n-1H2n
Sincer[lz,2 .. Zl(,;szm satisfies the anti-self-dual relation (2.12), we have shown that the field strdfgttist are constructed
from the 4-dimensional ADHM construction satisfy the anti-self-dual equatiomidinensions (2.2).

We show that the ADHM data can transform more simplify form without loss of generality. It is easy to find that the Weyl
equation (2.30), the normalization conditiwfV = 1y, the first and second ADHM constraints (2.21),(2.22) are invariant under
the following transformations:

CHC =UCR, DD =UDR, V-V =UV, (2.39)

where? € U(N + 22"1k) andR = Loont ® Ry € 1ozt ® GL(K; C). Using this UN + 22"-1k) x GL(k; C) transformation, we can
fix the ADHM data to the so-called a canonical form:

cz(owlx[?“kl), D:( Szt ) (2.40)
122“71'( T[22n—1k] X[zzn—lk]

Here the matrix subscripg] x [b] means the matrix size, and the sym&g;o=-1q stands f0|(51 INIXK -+~ Soent [N]X[k]).
The existence of the canonical form is guaranteed by the non-degeneracy condition. In the canonical form, all the ADHM data
are included in the matricésandT. Let us now rewrite th&-independent conditions of the first and second ADHM constraints
(2.24),(2.27),(2.29) in the canonical form. In this caB&C = Lm1y = 1t ® 1 thus the condition (2.24a) is automatically
satisfied. The condition (2.24b) means that the mafi® is written with the ASD basis,. In the canonical formC'D = T
thus (2.24b) becomes

T=e08TH (2.41)

whereT# is ak x k Hermite matrix. The condition (2.24c) is rewritten as
S'S+T!T = L1 @ EMY. (2.42)

This x-independent condition is the natural generalization of four-dimensional one which is usually called the ADHM equation.
On the other hand, the-independent conditions of the second ADHM constraint lead to new type ADHM equations. In the
canonical formE{™Y = 1, ande* E(-? = T thus the condition (2.27) becomes

fTH = THE. (2.43)
For this condition, the condition (2.29) is rewritten as

Qe T T = 0. (2.44)
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In higher dimensions, the ADHM data must satisfy the new type ADHM equations (2.43) and (2.44) in addition to the stand
type one (2.42). Finally, we note that there are residual symmetries which leave the canonical form (2.40) invariant.
transformations are given by
Sar> S, =QS;R T T* =R TR, (2.45)
where the indexaruns from 1 to 21, Q € SUN) andR e U(K).
Next, we study the gauge group of the instantons that are generated from the ADHM construction. The transformation o
zero mode which preserves the normalization condMiévl = 1y is given by

V(X) = V(X)g9(x), g(x) € U(N). (2.46)

Note that this transformation is independent of the transformation (2.39). This zero mode transformation leads to a gauge
transformation through (2.32). Indeed, the gauge field is transformed to

A e g (0AG(X) + g1 (00,g(X). (2.47)

This transformation is same as the ordinary gauge transformation. Hence, the instantons that are generated from the A
construction possess the unitary gauge groug)UBecause of this fact, in the special ckse 0, we find that the ansatz (2.32)
gives a pure gauge, namely, it automatically solves the ASD equation (2.2) in the vacuum sector. We are interested in insta
that are characterized by the instanton nunihéut the homotopy groups become trivial when the rank of the unitary group is
small. Therefore the rank of the gauge grolis restricted by the condition that the homotopy grawp 1(U(N)) is non-trivial.

The non-trivial homotopy groups of the (special) unitary group are

Tan-1(U(N)) = m4n-2(SUN)) =Z, N> 2n. (2.48)

For this reason, we demand the conditidn> 2n when we consider the topological instantons. In addition, we note that
the ADHM construction does not impose the speciality condition on the gauge group in general, namely the gauge grot
not the special unitary group SNJ. We can decompose the groupNj(into the special group SB) part and U(1) part:
U(N) = SU(N) < U(1). Here the symbok means the semidirect product of the group. Usually, we must fix the element of U(1
by hand when we consider SN instantons in the ADHM construction.

In higher dimensions, although we still do not know that a formula that similar to the Osborn’s formula (1.56) which is giv
the relation between the action and the ADHM data directly, we can show a formula that alternative to the Osborn’s formul
calculate the action from the ADHM data. Recall the topological ch@der the s-dimensional instantons is defined by the
2n-th Chern numbe® = (-1)"A, [ TrF(2n). For (2.38),

2n
F(2n) =(}) Fi---F dX® A dX2 A« AdXt A dxe

2 © ' Man-1Man
_ Z_;SMIMZ,,_,,4H,1H4H (v*c (A"a) (=L, 22, ) @ 1) c*v) (v“‘c (ata)™ c"‘v)zn_1 d*nx

1 . -1 -1 . 2n-1
= S G i i (V*C(A*A) (i(—l)”22“122n4®1k)cfv) (VTC(ATA) C'v) d*x

=(4n)!

-1 . 2n
— +(~1)"(4n)! (VTC (aa) c'v) d*x (2.49)
Here we used (2.13). Now we define the charge dedsagQ = N, fd“”xQ, then we obtain the charge density formula:

Q = +(@n)!Tr (Vic@ata)iciv)™, (2.50)

where+ corresponds to the ASD solution (tensor) respectively. When the ADHM data is the canonical form (2.40), we ¢
rewrite (2.50) as more simplify. Since the circulation law of trace, (2.50) becomes

Q = £(@n)!Try (Vic@a'a)'civ)”
= (@A) Trm (ATA) TV VIC)”
= +(4n)!Trzn ((ATA)ICT (1 - AATA) AT)C)ZH
= £ (4n) Ty ((ATA) (1 - CTAATA)ATC)) ™
[

2
= £(An)!Tr sy [ Lo ® (B (L - D)) (2.51)
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Use Tip [1a ® Xy ] = aTrp Xy, then we obtain the fomula with canonical form:

Q = +221(4n)\ T, ((ES))‘l (- Eﬁz)))zn. (2.52)

Now we have introduced the ADHM construction of the ASD instantonsidithensions. Here we have some comments
on the higher dimensional ADHM construction. Compared with the four-dimensional ADHM construction, the first ADHM
constraints (2.21) is the natural generalization of the four-dimensional one. On the other hand, the second ADHM constraint
(2.22) is an essentially new constraint and this new constraint corresponds to the non-linearity of the ASD equation (2.2). Itis
difficult to construct the multi-instantons in higher dimensions, because of the non-linearity of the ASD equations. In the higher
dimensional ADHM construction is similar to this situation, namely the constructions of the multi-instantonsiaod 8y the
second ADHM constraint. We will discuss this fact in more detail in the next section.

2.3 Higher-dimensional ADHM data with U(22""1) gauge group

In this section, we introduce explicit ADHM data in higher dimensiamng (2). However, it is hard that we find an essentially
new ADHM data, hence we will consider the data type that is generalizing the well known four-dimensional one and choose
the rank of the gauge group t = 221, Here we recall that the first ADHM constraint is the natural generalization of the
four-dimensional one. Therefore the data type that is generalizing the four-dimensional ADHM data already satisfies the first
ADHM constraint, and we call this data type as an ADHM “ansatz”.

The second ADHM constraint (2.22) contains the inverse matix) 1, hence the calculation of this constraint is hard in
general. Therefore we use the following constraint instead of the second ADHM constraint to confirm that the ADHM ansatz is
well-defined as a higher-dimensional ADHM data:

C'VVIC = 1m1 ® EP, (2.53)

where Ef’) is an invertiblek x k matrix. The existence of the inverféf) is guaranteed by thzﬁf(l) and El(f) are invertible.
Although this constraint contains the zero m&jehe calculation of the Weyl equation (2.30) is more easily than the calculation

of the inverse matrixA"A)~* in general, namely we can calculate the constraint (2.53) more easily than the second ADHM
constraint. This constraint is same as the condition (2.36), therefore the ADHM ansatz satisfy the first ADHM constraint then
this constraint is same as the second ADHM constraint for (2.37).

2.3.1 BPST type one-instanton

In the case ok = 1, the ADHM ansatz in the canonical form is the simplest one:

(0 _(ALgena
C= (122n_1)’ D= (—a“e,,)’ (2.54)
whereA € R is the size modulus aral € R is the position modulus of the instanton. The solution to the Weyl equation (2.30) is
1 X'
V= % (_/1122“), (2.55)

wherex’ = (x* — af‘)e; andp = 2% +||X|%. The L.h.s. of the constraint (2.53) that is associated with the BPST type ADHM ansatz
(2.54) is proportional to the identitipen-1:

i A2
C'VVIC = = 1. (2.56)
P

Hence, this ansatz (2.54) is well-defined as the ADHM data of the anti-self-dual one-instanton. Indeed, we easily confirm that
this ADHM data reproduces the BPST type gauge field (2.7) by using (2.32).
Let us now recalculation the topological charge with using the formula (2.52).

ATA = 1o ® (2% + IX1P), (2.57)
and B
1112

2 4|52 (2:59)

cia(ala)aTc = 2(12%4 ® (2% + ||>*<||2)’l) %= 1ymr ®
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Here the ADHM data (2.54) is the anti-instanton case, thus we chose the minus sigh in (2.52):

Q = -2 (4n)! ( 1 _ (1— ”’N(”i ))2n = —22"1(4n)! (ﬂ—z]zn. (2.59)
2+ X 2+ X (22 + |%R)?

This is just the BPST instanton’s charge density (ref.(2.17)), thus we repralscel.

2.3.2 't Hooft type ansatz

We next consider the ADHM data with higher charges. A natural candidate for multi-instanton ADHM data is generalization
the four-dimensional 't Hooft one (1.60). However, in the casa of 2 , it was shown that the simple generalization of the 't
Hooft type ADHM ansatz is not well-defined as the higher-dimensional ADHM data in [25]. In the following, we will show thi:
fact in more detail. The 't Hooft type ADHM ansatz is given by

T+ = diadi_, (-a}). S=lpme(h L ... A, (2.60)

with &, € R is the instanton position ant}, € R is the instanton size moduli respectively. The Weyl operator that is associate:
with the 't Hooft type ADHM ansatz is

AT=(ST & ® (W +TH). (2.61)
Then we find
/1% + ”)?1”2 ) A1z ) Ce A1k
. L _ o LA BRI . Lk
ATA = S'S + gle, @ diads_; (%K) = 11 ® . : ' : , (2.62)
A1 Ao c A2+ IR

where we have defined, = x* — &, and||%,|1> = %%, (p is not summed). Therefore the ADHM ansatz (2.60) satisfies the first
ADHM constraint (2.21).
The solution to the Weyl equation (2.30) is

1 —122n71
=V (e o ding (5 )) ') @09
Heregp =1+ Zk=1 & We then examine the constraint (2.53). We first calculité V'C:
X
1 %\ . 1 [42%;
C'V=g,® %dlad;:l(m)s =e® vl ol (2.64a)
X
vic = (c*v)T =e® iSdiag;_l( NX?’ ): e i(alxﬂ X AKX, (2.64b)
"B B Y A X
Thus plugging the zero-mode (2.63) i@V V'C, we have
. _ 1
CVVIC = (8l +20)/2) ® 55@ Hoof)? (2.65)
where
v 241727 27N e A2AKAY Py
Eft Hooty = . . . (2.66)

XX WA XXy BRI
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Here we have used the relatie,rei Ouylon1 + % V)/Z and definet = x'“/||xp||2 Since the constraint (2.53) requires that the
r.h.s. of (2.65) is proportional tby=-1, we have the following conditions on the modidi andaj,:

Amdn (¥ = aln) (X' - &) () = (2.67)

where the indicem, n run from 1 tok and are not summed. This condition is trivially satisfied in the cage-01, however, for
arbitrary moduli parameterky,, an, this is not satisfied in the higher chardes 2. Therefore the simple generalization of the 't
Hooft type ADHM ansatz is not well-defined as the ADHM data with higher chalges?).

Let us now demand the following condition for moduli parameters to satisfy the condition (2.67):

& — 8AlI* > Amdn, (2.68)

for all mandn. This condition means that each instanton is well-separated, hence we call this condition as the well-separated

limit or the dilute instanton gas limit (approximation) [21]. In the well-separated limit (2.68), we neglect alfftdeagonal
components of the matrig'” in (2.21):

B+|%l? ... A1k B +|%l? ... 0
EW = : : ~ : : . (2.69)
Ay e A2+ IR 0 o AR IR
Thus the second ADHM constraint becomes
S 112
+ + 1 + (1) . Vo . ”Xp”
CTAGM AYIATC = 6] @ diadt_, X (122n1®(E ) )ev®d|ad;:lxp_122n,1®d|ad;:1 yrearadt (2.70)

Therefore the 't Hooft type ADHM ansatz (2.60) in the well-separated limit satisfies the second ADHM constraint (2.22).

We proceed to evaluate the instanton charge for the 't Hooft type ADHM data as follows. The 't Hooft type ADHM ansatz
does not satisfy the second ADHM constraint (2.22), thus this ansatz is not the ADHM data in strictly speaking. Although it is
not exact that we use the formula (2.50) which it is assumed that the ADHM ansatz satisfy the second ADHM constraint, we

consider that this formula give an approximate charge density if each instanton is well-separated. Plugging (2.62) and (2.64) into
the formula (2.50):

1
Q:—(4n)!Tr{eZ®%(/llx‘l‘ X K
~ -1
B+l Al o Ak X
Ldy  BHI%IP o A 1 | 42X5 [
122n—1® . . . . e ®_ }
: : . . . \/5 .
PIRD DA .. B[P AKX,
2, 19112 -1 (A% &
A7 + 1Kl A1 Ao ... A1 Ak ‘llx%z
2 112 2
_ —(4n)! i L% L% A, Atz IR A2 Tl
=g 1188 ® (Mlz A W) 5 ; E : : (2.71)
A1k Aok c BHIRIP) | Ak
1%
Therefore we obtain the approximate charge density of the 't Hewfstanton:
—(4n)!
Q= ——=Tr{f"eel . (2.72)
{1l
where the scalof#” is defined as
o -1 (A%
A2 4 |52 ke ”}yf
o o o /11/12 A5+ ||)?2|| - /lz/lk 2
po_ (A% L% A& ) 2 I?
f _(nilulz [ E ; : ., : : @.73)
A1k DA o BHIKIP) | AKX
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Figure 2.1: The charge density plots of the 't Hooft type solutions in eight dimensica®). The upper figure corresponds to
k = 1, left and right ones in the lower figure correspond te 2, 3 respectively. All the plots are projected to a two-dimensional
subspace in the eight-dimensional space.

In order to illustrate multi-instanton solutions, we write down the charge densitiés=dr, 2, 3 explicitly.

Fork = 1, the charge density is calculated with using (2.72) (Of course, in this case,we can lead same result with using (2
also.):

(2.74)

/12 2n
't Hooft —

Q(k:1) _ _22n—1 an)! (
“n (22 +I2)

This is same as the BPST one anti-instanton charge density, hence we fir@ﬁm| = 1. We note that the one-instanton
solution that the 't Hooft ADHM data is singular at the instanton position:

. 1 22
Azlngular: Z_E}(l-:)a" In (1 n W) , (2.75)

while the BPST type solution (2.7) discussed in the previous section is non-singular. These solutions are connected b
following singular gauge transformation:

Aﬂnon-singular: glAfslingulargil + glaﬂgil, g1 = ) (2.76)

112

Fork = 2 andk = 3, the approximate charge densities are evaluated as
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Qb = — (4n)! ‘Zznl[ﬂg“)@u‘*+AZ||X1”4+WZ 3 (1% + 1%I” - 2% %) zn, (2.77a)
(A2 + A%l + 15l 21%)
Qopy = — (4n)! 22“[y(ﬂ§||>~<2||4||>~<3||4 + AT (1% + 11511 - 2%55%)
+ Bl YI%ll* + AFAZ%l (15l + 11%li” — 2% %)
2n
+ %l l%ll* + 2505l (1%l + %! - 2>”<’;%;))] : (2.77b)
Here we have defined

y= = : (2.78)

(A2I1%1211%al12 + AZIIZ2l1%al12 + A3I|Z12l1%al 2 + 15121 Ral 2 al |2 )

For more detail on the calculations, please see below subsection 2.4.4.

The eight-dimenaional numerical profiles for the- 1, 2, 3 charge densities are found in Fig 2.1. Here the parameters that
satisfy the well-separated limit (2.68) are chosen suchahat 0, 1 = 2 fork = 1,a; = -5,a, = 5,& =&, = 0, (u > 1),

A1 = A = 2, fork = 2 anda}, = 10/ V3 x sin(2t(m — 1)/3), a3, = 10/ V3 x cos(Z(m - 1)/3), &4 = 0, (u > 2), Am = 2,
(m=1,2,3) fork = 3. For these parameters, the numerical results of instanton charges are eval@ate®?as1.02 k = 2),

Q ~ 3x1.03 (k = 3). Therefore we find that the dilute instanton gas approximation, which is needed to solve the second ADHM
constraint, works well.

Some comments are in order. First, we can find exact solutions to the condition (2.67), but these solutions are unsuitable
data for multi-instantons. The condition is exactly solvedipy= 0 (for all m), but this solution makes the pure gauge field,
namely, it is a vacuum configuration. On the other hand, we find another exact s@lytiom, (m # n) which means that all
the instantons are localized at the same point. However, this solution is equivalent to the one-instanton’s one.

Second, we will show that the topological charge of the 't Hooft tggestantons in the well-separated limit is an integer.

In the case ok > 2, for the charge density formula (2.52), the charge density of the 't Hooft type in the well-separated limit is
given by

2n

k /12

Qthoott = —22"1(4n)! [—pz] : (2.79)
(13 + 1%012)

This is the summation of the above mentioned one-instanton charge density, therefore wgabtai = k.

2.3.3 Jackiw-Nohl-Rebbi type ansatz

Let us study another of the 't Hooft solutions which is so-called Jackiw-Nohl-Rebbi (JNR) type solutions.
For (1.62), we give the JNR type ansatz as

(1l ®A -®A Ko ® A A
8= (121 82) 701 (iager o)~ (Remaorsa) =@ cadaip) (280
whereA = (11/do ... A/Ao), % = (¥ — &, & = &'e, andX = diag(®y. ..., %). Hered e Randa' € R (i =0,....K) are

moduli parameters. We note that the JNR ansatz (2.80) is not in the canonical form and contain more moduli parameters than
the 't Hooft one. The latter is obtained from the former by the liggit> o, 19 — oo with fixedag/1g = 1
We can confirm that the JNR ansatz satisfies the first ADHM constraint (2.21):

ATA = 1pms ® (|I%I2 'AA + diad; (I%]%)) = 1z2s @ EPNY), (2.81)

where the symbdIM means the transposed matrixMf so'A is k-column vector andAA is k x k matrix. The solution to the
Weyl equation (2.30) is given by
—122n—1

dlad; (nx HZ) %A

(2.82)
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whereg = 1+ ”X‘]” P (”Xp”z)
Now we examme the second ADHM constraint. We first calcula@dy, VC :

cfv = L1 ® (t/\ 1k) 1 d_lzzn_l e ot
N7 eﬂey®( iads_ (”X Hz)xo A)
1 N %0
= ——|-1on ®‘A+ee;®(d|a _( J )]
N AU g %o
= 2 (el of -1, + dia %% A 2.83a
VA S o diags | e )) A (285
vice L ee, ® A|-0""6" 1, + diad_, pxé (2.83b)
Vé 1%I2 '
Thus
o1 5 _ X750
civv'c = p ec ® ( -6 1, + diad_, ( )I(IOZ)] ‘A] (epef,@)A(—éP#é‘T#lk + d'ad§=1(||£)|<;%)])
p
/12 Ady ... Ak
N ~ 2 ~r o
1 X(‘; 1 /12/1]_ /12 v Aok ) x(")(g
_ = I p Li# vt p _ cott opitt
=3 e.€le.e) diad_, ( NG ) )/12 : s diad;_, EAE 575
Adr Adz ... A2
AiY’f;\V/pr Algzﬁ‘v\gﬁ /ll/lkYgiYgi
1 eded s LAYSYTE A2V AYSTY,
¢/l(% U=y =P~
ALY Y, AR
1 vpo
=2 (e.€le.€) ® ElSin) (2.84)
0
where #:= 4n and
YY)  aAYTY
LYY YY) RAYSTY,
BN = (2.85)
(INR) ™ : : - : ’
P P (o L % P (ol L b ol i

Here we have defined;, = )”(*,{p?é/“)”(mllz - 0**3% andm = 1,...,kis not summed. In each component in the matrix in (2.85), we

have X

1%l 1 1

= ————%mn —— XX — ——= XX, + Loz, 2.86

Rl ™ ™ R 0% ™ [ o * 12 (2:89)

Fork = 1, since we have the rel::xtioqf(*b + XX = 2%5&;12%—1, the right-hand side of (2.86) is proportionallig.. and the
second ADHM constraint is satisfied. The charge density okthel JNR solution is given by

Yi'Yole,elee

— 2
22 (15l + 15112 - 2%5%) )
- — - 2

(%1222 + 11%4]?)

QKD = —(an)r - 221 (2.87)

wheredn = An/do. The moduli parameters amg/1g = 4 anda’i - da = &, so thek = 1 JNR solution has total (4+ 1)
parameters. Therefore the= 1 INR data is essentially equal to the 1 't Hooft data, and we find that the numerical results of
thek = 1 instanton charge (2.87) @ = 1.

Fork > 2 case, it is not straightforward to solve the constraint (2.53) in a general fashion. However, a solution is founc
the well-separated limit (2.68). In this limit, we can neglect all tfediagonal components B~

EN = diads, (1I%l2A5 + [I%l?) - (2.88)
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Then, the second ADHM constraint is satisfied:

I%lI2A% + 2256 %5 + [|%ol1?
p pXS p P (2.89)

CTA(ATA)IATC =~ 101 @ diad_ [ - ~
g1 1011242 + [|Xpl|2

We also observe that the instanton charge is quantized in this limit by using the same formula of the 't Hooft ones. We note
that the JNR data is not in the canonical form. In this case, the charge density formula (2.52) is rewritten as

_ 2
Q = —(4n)! - 2211y, ((E,(})) Yc@ - Ef’)) " (2.90)

whereC® is defined byC'C = 1,21 ® C@. In the well-separated limit (2.68), we ha@&C ~ Lo ® (diad;:lI% + 1, thus

2n

k(A2 (1IRol12 + 11%l12 — 2% %)

~ _(4n)I . 9201 p\"'"p P
QJNR (4n). 2 - 222 - 22
1l (I%l222 + 1%I1?)

(2.91)

This is just the summation of the JNR type one-instanton charge density and the charge associated witfQZ 1) is

Note that we previously discussed these ADHM data with the unitary gauge group for simplify, we can take the orthogonal
gauge group case as following. Recall the fact that the gauge transformation of the ADHM instantons is derived from the degree
of freedom of the zero mode, thus the gauge grGugepend the (field) values of the zero mode (ref.(2.46) and (2.47)). In
previous deiscussion, we assumed that the zero mode takes complex values because the AGvasgienerated by the
complex Cliford algebraC¢4,-1(C) namely that the Weyl operater take complex values. Strictly speaking, this fact comes from
that the explicit matrix representations of the complextatd algebraC{s,1(C) are the comple values matrices (see subsection
2.5). However we can take the real f8rd algebraC¢4,_1(R) instead of the complex Glord algebraC4,_1(C) to construct the
ASD basis (see detail discussion in subsection 2.5). In this case, the explicit matrix representations of thiorebhigibra
Clsn-1(R) are the real values matrices namely the ASD basis take real values. If ADHM data take real values then the Weyl
operator is the real values matrices, thus the zero mode take real values namely the gauge group is the orthogonal group. Now
we recall that these three type ADHM data (BPST type, 't Hooft type and JNR type) take real values, and these data (with
well-separated condition) satisfy the ADHM constraifitsTherefore we can choose the gauge grGupy using the Ciiford
algebra types.

2.4 The detailed calculations

2.4.1 The gauge field for anti-Hermite versus Hermite

Here we discuss thefiérence between the anti-Hermite gaugga £ —A,) and the Hermite gaugé\z = A,). The anti-Hermite
gauge leads the equation that is more simple form than the Hermite gauge. Hence the anti-Hermite gauge is usually used in
the mathematical physics. On the other hand, the Hermite gauge leads pysical quantities in which real values (Of course, the
anti-Hermite gauge bacomes pure imaginaly physical quantities).

The field strength is defined by

anti-Hermite :F,, = 9,A, - 0,A, + [AnA| = Fl, = -F,. (2.92a)
Hermite :F,, = d,A, - A, —i[AL A = Fi, =F,. (2.92b)
We naturally suppose that the action 2.4 becomes minumum when gauge field satisfies the ASD equation (2.1). Hence we

decide the factor of the action by demanding the condition that the action increase positive if the gauge field out of the ASD
equation. Now we recall the Bogomol’'nyi completion:

S= [TFO) A vaF ) = 5 [ Tr(F) = waF () 7 28 > [ TrF(an) (2.93)

SHere the reason that we expressly wrote “the ADHM constraint” stress that we did not use the explicit form of the ASD basis when we confirm the validity
of the ADHM data. The explicit matrix of ASD basis is deferent between the real and compter€hlgebra, thus if we use the explicit form when confirm
the validity of the ADHM data then we do not hold the guarantee of data when using anotfierdGligebra in usually. Indeed, the ADHM equations are
deferent form between the real and complexitGid algebra.
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For this equation, the actid® increase positive if and only if TF(n) + #4,F(n))? > 0. Thus we determine the action factor by
the condition that the arbitrary field strenditsatisfies T(F(n) + #4,F(n))? > 0. First,F(n)" becomes

anti-Hermite :F(N)' = FTA--- AF" = —F A--- A =F = (=1)"F(n), (2.94a)
Hermite :F(n)' = FTA---AFT=FA---AF = F(n), (2.94b)
and this Hodge dual becomes
anti-Hermite #4,F(N)" = (=1)" %4, F(N). (2.95a)
Hermite :#4F(n)' = %4,F(n). (2.95b)
Thus
anti-Hermite :(F(n) + #4F(N))" = F()" + 4, F ()" = (-1)"(F(n) + *4,F(n)), (2.96a)
Hermite :(F(n) + 4 F ()" = F(N)" + x4,F ()" = F(n) + #4,F(n). (2.96Db)
Now we recall the following
X is anti-Hermite= Trx? <0 e R, (2.97a)
X is Hermite= TrX? > 0 e R, (2.97b)

For (2.96) and (2.97), the factor of the action is defined by

(F(n) +#4F(N)*<0 atne O, = S=— [TrF(n) A #4F(n),

: anti-Hermite
& - {(F(n) +xnF(N)*>0 atneE. = S= [TrF(n) A smF(n),

— S= (—1)”fTrF(n) A #4nF (D), (2.98a)
A, : Hermite= (F(n) + 4 F(N))?> 0= S = fTrF(n) A #40F (). (2.98b)
Next we consider the ADHM construction case.
anti-Hermite :A, = V9,V (2.99a)
Hermite :A, = iV'd,V. (2.99b)

In the Hermite gauge case, the calculation of the field strength from (2.99) becomes
Fu=0,A —IAA —(ue)
=id,V'o,V +i9,VIVV',V - (u & v) VeV = -9, ViV
i3,V (1-VV)o,V) - (u V)

- vic(ata) ™ (i25) e L) C'V. (2.100)
Hence the charge densit® = components T¥(2n) becomes
Qanti—Hermitez i2nQHermite = (_l)nQHermite (2-101)

Therefore the charge density formulas are

2n

anti-Hermite :Q = +(~1)"(4n)!Try (v*c(ATA)’l ch) , (2.102a)
_ . 2n
Hermite :Q = +(4n)!Try (vTc(ATA) 1CTV) : (2.102b)
and
anti-Hermite :Q = +(-1)"(4n)12*Tn (E.* (1. - EP)). (2.103a)

Hermite :Q = +(4n)122"1Tr, (E,;l (1k - Eﬁz))). (2.103b)
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2.4.2 ASD tensor

In this subsection, we will show the (anti-)self-duality of ASD tensor (2.12) and the whole product of ASD tenosr (2.13).
Note that we here do not use the explicit form of theffotd algebra, therefore the following relations are general properties
of the ASD basis.
For latter convenience, we introduce the following:

yi =T = 10 wherer™ = P,I;, (2.104)

Thus

€ = Suanl — 0pjyj. €, = Suanl +Gpjyjs (2.105)

Proposition 2.4.1(The basic property of the ASD bagig).

.6 +e€ =¢ee +ee, =20,, (2.1064a)
€,6, + €6, = 20,408, + 26,4n€, — 20y, (2.106b)
€6l + efe] = 26,an€] + 26,4€] — 20, (2.106c)

Proof. The proof of (2.106a). Here we consider the casqlej + evef,. For (2.105),

6.6 + €€, = (Juan — 5,0 %1)(Ovan + 6vj¥j) + (6van — 6,i¥i) Gpuan + 6,j¥))
= 26,4n0van — 640y YiYVj — 0viOuiYiYi
= 26,n0vn = 8,8y (¥1Y) + Vi)
—_———
—26”
= 20,4n0van + 20,i0yj0ij = 20,y. (2.107)
Note that the proof of'e, + €/e, is same methods(e, + €/, = (6uan + 6,i%i1)(6van — 6,j¥}) + (van + 6,i¥i) (Suan — S ¥i) = - - .)-
The proof of (2.106b). For (2.105),
€.6 +6¢, = (6,144n - 6,ui'yi)(6v4n - 61/]7]) + (6v4n - 6vi7i)(6y4n - 6/1j7h)
= 20,4n0van — 28,400y Vi — 20yan0,iYi + 040y ()/iy ity j)’i)
= 20,4n€, + 25V4ne,, - 26}11/' (2.108)

(2.106c¢) is able to prove with same method. QE.D.

Using (2.106a), we obtatin the relation wjihz v:
M) =2¢efe, = 2010, 50 = 26,6l = 2001, vy (2.109)
where we introducedl) = 1. Sincel) 1% = 1 = 1 = 11 thus we obtain
rr® = _rEre, (2.110)

Now we give a lemma which is used to lead the (anti-)self-duality of ASD tensor (2.12).

Lemma 2.4.1.
Hereszv) is the ASD tensor which is defined (2/8), then ASD tensor satisfies the following relation:

s@  s@ _y@ 3@ (2.111)

[apz ** * “pan-1pzn] ‘waptz  “pon-1in?

wherey; # uj
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Proof. We use the mathematical induction.
Let the numbem denote the number (ﬂfi’ product times (i.e. & = n). First case ofn = 2, from (2.109) and (2.110),

Z(i')

() = 2rK) = 9T - TOr) = N + 1T = 2 = 302 e.12)

If the case ofn = p— 1 is satisfies

& F &
p-leeven:ry’ .. .7, = e e, (2.113a)
&) () _ (= +
p-leodd:Iy)...I0 =T ...TE) (2.113b)
then the case ah = p becomes
. 1 - _ _
_ . () F 17 - = (1) F 1) _ & (F(=) (#)1(F) (£)
p-leeven: [ T = 5 (r[m LD T =T DT e+ TET .rﬂpfﬂ)
1 . - _
_ = (r® (# 1) (£) & &, ... (£) (# 1)
= p(r[ﬂl...rﬂpfﬂrﬂp #1610 10+ T )
_ (F &)
= 1"[#1 .. .l"#p_ﬂl"#p ,
. () (F) &) _ = (F) (=)
L (1Bas I T I =T .. 1) T8, (2.114a)
1 . _
_ . () (#) 7F) _ = (1) (#) 1@ _ & (£)1() (#)1(¥) (F)
p—1leodd: T DTl = (r[ﬂl T T =T TE e+ TEOTED .rﬂp_ﬂ)
1 - - .
- = (T® & 1) (+) (CONE GO NI (+) & 1)
= p( by T TG Tl T )T TO)
—_ 1@ (£) =)
=Ip, - Do o,
. (%) ) 7 _ 1= () 1)
L (21130)= 1) T I =T LT T, (2.114b)
Now the case ofn = 2 satisfies (2.113a), thus the all casesaf N satisfy (2.114a) or (2.114b).
() ® ®  y® NV'ow e (N e e e
Z[;m . ..EH;MHZ"] =X Dy o (E) l"[;l ...Fﬂ;nill"ﬂm] = (E) | DS Dl DA
() () 7F _ @) () 1
= Iy .Te o =10 .18 1. (2.115)
Therefore the all cases ofe N satisfy (2.111) because (2.114b). QE.D.

Next we give the Hodge duality of the ASD tensor in dimensions. This duality is the generalization of the (anti-)self-
duality, and the (anti-)self-duality (2.12) follows from the following theorem.

Theorem 2.4.1(The Hodge duality of themdimensional ASD tensdffv)).
Hereszy) is the ASD tensor which is defined (&/8), then ASD tensor satisfies the-dimensional Hodge duality relation:

@ @ (G, s () (=) (2.116)
[uape = Tuop-1pzpl T _22(n—P)(2(2n - p)! M2 H2pH2p+1--Han-1Han Spizps1fiopr2 * * * “Han-144n '

where p is integer a® < p < 2n.

Proof. Now we write the matrix reparesentationlgf= I'” @ T) as

r™ o )
r-:( N (2.117)
'“lo




32 CHAPTER 2. INAN DIMENSIONS N > 2)

The volume(chirality) elemenb which is defined by (2.10) is the central element of theéf@id algebraCf4,-1(K):

0 -1

The proof of the Hodge duality start from this equation. For the following proof, we will introduce the notation that an basic
order and a lexicographic order. The basic order means that the numbers on index always increase toward the right side, for
exampleXi, se. The lexicographic order means that the index numbers increase toward the right side, for eample
(In this order, index is not number).

The strategy of the proof is that we first prove the basic order case which is more easily than the lexicographic order case.
Next we prove the lexicographic order case which can be proved with using similar method of the above case.

First, we right multiplyI'sn-1 — I'sn-2 — --- — I'zp1 in order on both sides (2.118) and rewrite the r.h.s. to the basic
order.

ils.. Tany = (~1)" (1 0 ) (2.118)

1 0
(—1)F1F2 cen sz = (_1)n+l (0 —l) r4n—1r4n—2 cee I_‘2p+l,
_ (_1\+1 1 0 _1\yb-1
= ( 1) 0 -1 X ( 1) Iﬁ2p+1r2p+2 N PR (2-119)

Here the origin of the L.h.s. (overall) factorX) is (2(2nh — p) — 1) times product ofiz =-1(=2p+1...,49n-
1 and not summed). We give the explain of the r.h.s. facta)X* as follows. FoliI'; = —-I'T; (i # j), we taken the oper-
ate thattan-1Tan—2. .. Tops1 = (1)@ P2Tyn 5. Topialang — (1)@ P2(— 1@ P31y, 5. Tonsilanolan1 — ...,
thus the exponent part of{) is summation{2)+(-3)+- - - +(-2(2n- p)) (Here we omit the common even numberr2{)
because of{1)2®-P = 1 for all p.). Because 0f{2) + (=3)+--- +(-2(2n- p)) = - 2°TPi = —(2(2n- p)? + (2n— p) - 1)
and £1)™ = (-1)™ m e N, the factor becomes-)~@@-P*+@n-p-1) = (_1)-P-1,

Now we using (2.117),

1 0 —p-
(-1, .. Iop = (_1)n+1 (O _1) x (-1)7P 11—‘2p+1r2|0+2 N W]

rire e re) ) ) 0
1 2 2 _ —p+1 2p+1" 2p+2 4n-1
= ( 0 0 poro  po|= TP 0o o (2.120)
12 " 2p 2p+17 2p+2 " 4n-1

We right multiplyT'4, = 1 on the r.h.s., and then rewrit§” to the ASD tensoE(; with using (2.109) an@") = -1

(+)1(+) (+) (+) 1) (+)
[Fl EIN T )] = (-1 P [rzpﬂrzw...rm oo )]
0 rry’..Iy, 0 S S PSP O
—py(+) (+) — -p+1 2n-p-19-(2n-p)s-(+) (+)
{<_1)p2 P20 S = (P (OIS 3
—py(= - _ -p+1 2n-p-1o9-(2n-p) (- -
(~LP2PE) . Eoh yop = (CLTPE X L (ZLPPR2RIR ) o ety
(*) () — —-po-2(n-p)y(+) (*)
= 7. Zo yop = 2ELTPZEOPEE) ey Dty (2.121)
Since the lemma 2.4.1, we obtain
() &) — -po-2(n-p)y(+) ()
I o ey = EEDTP2EOPED ey Tty (2.122)
Next we consider the general case. FE:[FJ-} = —26ij,
Fﬂlrﬂz s FHAn—l = 8/11/12--~ll4n-1rlr2 oo Tana, (2.123)
thus
Tl - Dy = (1)1 10 2.124
Hi™ M2 =+ Han-1 _( ) Eurpta.. pian-1 0 -1/° ( . )
We start from this equation. We right multiply,, , T, , - .. Ts,,,, in both sides, and then we rewrite the r.h.s. in lexicographic
order.

1 0
(_1)FH1FH2 te Fllzp = (_1)n+lg#1#2~~-ﬂ2p#2p+1~-~ﬂ4n71 (0 _1) FI—lAnflranfZ te Iﬂ#2p+1

1 0 .
= (_1)n+lg#1#z~~~H2pﬂzp+1m#4nfl (0 _1) X (_1) P er2p+1rH2p+2 s Fanfl’ (2'125)
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wherey; is not summed. Now we using (2.117),

_ 1 0
(_1)r/41r/12 R Iﬂllzp = (_l)n peﬂlﬂZ»--ﬂZPﬂZmlem—l (0 _1) X FH2p+1FH2p+2 te r,“4n—1

oy . ré) (1P ) e el 0 '
0 reTe . T pue stz s 0 T T -+ Ty
(2.126)
Right multiplyT¢? = 1 on the r.h.s.:
(H)(+) (+) (+) 1) (+) 1)

(rﬂt rﬂ: . "rll:p ) ( )) - (_l)n—erlgH o (r/l:pﬂruzmz o ’rﬂ‘;n—lr4-:—'l “) “) 0 ©) ) ) (2 127)

=)= - 1H2..-[an-1 - - - - :

0 rlll 1—‘112 T rﬂz;: 0 _rll2p+1r,u2n+2 T 1—‘/l4n711—‘4n :

Now we rewritel';” to the ASD tensoE’:) with using (2.109) an@{" = —T{”), and then we can include the index # the
anti-symmetric tensas with usingT™ 1) = 55 andrr® = s Hence the indexmin the r.h.s. case, we obtain the
following relation for similar calculation of the basic order case:

T 8= (-1)P2R ) x) (2.128)

[papz - H2p-1H2p. Ejuptz..pan-1h1n HMen+1Mon+2 * ° " T Han-1Han’

wherey; is not summed. On the other hand, in the casenah4.h.s., we right multiphyl,,, . ...I,, in the starting equation
(2.124). Therefore (2.125) replace by

1 0 _
FﬂlrﬂZ te FNZn—l = (_1)n+18ﬂlﬂ2---,“4nfl (0 _1) X (_1) prﬂZnFIJZrHZ te l—‘/~44n—1' (2129)
In this case, the factor of the Lh.s. becomesl}{®P = 1 becase 2@ - p) times productl’? = -1 (i =

2p,...,4n — 1 and note summed). In the r.h.s., we take opeFateilan2...T2p — (=12@ Py 5. . Toplan1 —
(—12@-PL(_12@2F, . Tyl oTan1 — ... thus the exponent of-@) is 322 P i = 2(2n - p)2 + (2n - p) times.
Therefore the factor of the r.h.s. is{)P.

After that, we take same operate in the above, and then right mulltﬁﬁly: 1 on the I.h.s. of corresponding equation for
(2.126). Here we USiNg, i,y 1j12p...1an14n = Epy..pizp 140uzp.. a1 WE ObEAIN (2.128) again. The equation (2.128) is not summed
HUons1 - - - Man. NOw, using the lemma 2.4.1, we can rewrite the equation to summed index notation:

(G A (=) (=)

() (£) _
z z = E5mn . (2(2n - p))! Eptsz.- Haphtzpss--Han-1htan Spizgepizps2 ** * Shian-1han

[kap2 ** * Tpap-apizp)

(2.130)

QED.

In the teorem 2.4.1, we take = n then obtain the following corollary which plays most importance of theldnensional
ADHM construction.

Corollary 2.4.1 (The (anti-)self-duality of the@dimensional ASD tens@ffv)).
HereEffv) is the ASD tensor which is defined (&8), then ASD tensor satisfies the-dimensional ASD relation:

s@ e, 1 $) $) (2.131)

=+ *
(12 Hon-1p2n] T T (2n)| Eptapa..-pan-11an Spgny apionsz * * * “pian-1ftan

Remark2.4.1 The orign of factor 220-P) in (2.116) is the relation between the ASD tensor with the the (decomposéyrcli
algebra in (2.109). Thus we can show Hodge duality more clearly by changing the difinition of the ASD tensor (2.8). We def
deformed ASD tenscx®) by

S o ] e ; aoy . oy
2}(1':'/) = 3 (eﬂev —e eﬂ), Efw) = _3y0() -

) 55 = 5 (6.8 - &) (2.132)
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where we multiply the imaginay to cancel numeratet*-°. Now the Hodge duality of ASD tensor (2.116) becomes

SCC I S £ £ (2.133)

[pape ‘Hop-1442p] - (2(2n - IO))! Eptapiz.. p2phaps1 --fan-14n Hop+1M2p+2 * * * THan-1Man”

Although the equation becomes more simple when we use the deformed ASD tensor, other calculations become more compli-
cated in generally. In this paper, we have been treat ASD instantons, namely the (anti-)self-duality case. In this case, the equation
is same form for both ASD tensor difinition, hence we have been take the simple definition.

Finally, we will show the whole product of ASD tensor (2.13) which is used the charge density formula of ADHM data
(2.50).

Lemma 2.4.2.
2 I = =127, (2.134)

wherel is identity element of the decomposedjGid algebra @f;)_l(K).

Proof. This proof start from the following relation again.

(1 0
Il .. Tgng = (1) 1(0 _1). (2.118)
Forli =TV o1,
rore ) 0 ) 1 0
172 -1 5 |= —1)”1( ) (2.135)
Ore e | =( _
( 0 roro ) 0 -1

We right multiply thel'{*) = 1 on the .h.s., and then rewrii” to the ASD tensok(; with using (2.109) and™ = -0

(r‘l”r‘;)...rg;)_ng;) O (_)):((—1)2”1r(1+)r(2‘)...rg;)_lrg;) AP A (+))
0 oy o)) e 0 QA S PASRR DR DA
1) )
(1(3) T - Zian- 1 0
= A S ) - (2139
0 (_1)(2) %P "'2(4n—1)(4n)

thus we obtain

(G )

o = (=122 (2.137)
(4n-1)4n

QED.

Using this lemma, we obtain the whole product relation (2.13).

Theorem 2.4.2(The whole product of the ASD tensor)

z(i) z(i) = i(_ 1)n‘9#1#2~»#4n71/14n 22”1’ (2'138)

Mip2 * ° " T Han-1M4n

wherey; # u;.

Proof. First we recall the following relation:
rilriz e ri4n,1 = 8|1I2|4n,11—‘11—‘2 R F4n—1, (2.139)

whereip € {1,...,4n— 1} andip # ig. We right mutiplyI's = 1( # = 4n) on the both sides, and then we obtain the folloing
with using same calculation of the proof for above lemma 2.4.2:

E(if) . 2.&) = i(_l)ngiliz...im,ll, (2.140)

inip * " Tligna#
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Next we conside the case that the position of the index 4# is arbitrary. Now we recall the following relations:

= = =0, (2.141a)
By _ o) (#) _ (2) HrE _ _y@yE Ly @) ™
i Ty = A7 207 = 2L 20T U = SR R ). Y = 0 (2.141b)
From these relations, the factork) is multiplied whenever to shift the index #. This means just Bﬁ,@g . .ijszn is
completely antisymmetric tensor. Therefore we can include the index # in the completely antisymmetrie, temsmwrite

(2.140) to
2E L E® = (=12 ] (2.142)

Hip2 * " T Han-1fan
QE.D.

2.4.3 Proof that the existence of the inverse® (a = 1,2)

We show again the ADHM constraints for convenience.

ATA = 1w @ EY, (2.143)
CTA(ATA)2ATC = 1o @ E?, (2.144)

Lets the Weyl operator satisfy the non-degeneracy condition:
rankA = 221k, (2.145)

First, we show the existence of the inveéé’. Because of the property of the rank: rakik rankATA = 22k, We recall that
Ais the (N +22"1k) x 22"~k matrix thus dimATA = 2271k, and we use the rank-nullity theorem: dii\ = rankATA+Ker ATA,
then we obtain

Ker ATA =0, (2.146)

where KerA means the dimension of the kernelAfIf the kernel dimension of the matrik is zero then the inverse matrix of
Alis existence, hence there i5'A)~* for (2.146). This is just the assurance of the existence of the inﬁﬁ)se

Next, we will prove the existence of the inveﬂég). The Weyl operaton contains the coordinate parameketherefore the
non-degeneracy condition (2.145) holds forafl Because of this fact anl= C(x ® 1) + D, we obtain

rank A(eo) = rankC(x® 1y) = 2"k (2.147)

Now we recall thak ® 1 = X‘e, ® 1 is the 21k x 221k invertible matrix, since we can give the inversexaisx* = ﬁe;
explicitly. Hence,
rankC = rankC(x® 1) = 22" k. (2.148)

We can also obtain the rank @: rank D = rank A(0) = 2°"'k. These facts give that rank = 2"k = rankC =
rank D = 221k, and the inverse fact: ranR = rank D = 22"k = rank A = 2?1k is trivial. Therefore we obtain
rankA = 22"k — rankC = rankD = 22"1k. We take the 21k x 22"~k matrix C'A to the same situations as (2.147) and
(2.148), and we use the expansid = C'C(x® 1) + C'D then

rankC'A(x) = rankC'A(c0) = rankC'C(x® 1) = rankC'C = rankC = 22"k, (2.149)

For this reasion and the rank-nullity theorem, we obtain ®&& = Ker A'C = 0. This means that the mag$a : C2" % —
CZ" andATC : €2k 5 cZ"k are bijective, and the maph{A)™ : €2k — c2" 'k is also bijective from the above proof.
Therefore, using the bijective map composition, we find that the @iap (ATA) o ATC : €2 — €2 becomes bijective.
If a map is bijective then the existence of the inverse map, thus the n@&itNgATA)LATC is invertible. Therefore we have
shown the existence of the invers’.

“TechnicallyA(x) does not have to satisfy the non-degeneracy condition at the instantons positions.
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2.4.4 The approximate charge density of the 't Hoofk = 2, 3 instantons

Here we lead to the approximate charge density of the 't Hoef2, 3 instantons (2.77).
For latter convenience, we show the following relations with uq‘@ = zf;)/z + Oy

2(%e) - Kiel) % = LRI — KD, (2.150a)
K% + X% = 655 (ehe, + €)6,) = K% (Z0)/2+ 200 /2 + 26, ) = 2%, (2.150b)

k = 2 approximate chage density

We first calculate A¢:

1_ 1 _ AR (2.151)
¢ 14 AL B I%lRlI%l + A2[Rel2 + 2152
%2 1%
(R 1 Bl —ade \(E) s
f”Veevz(f—l2 2—2) (2 2 ~2) Il (e e,
H I%I? %l (’li + ”5(1”2) (/13 + ||)'22||2) _ /1%/15 -1, A7 + [1Xall # u
1 B(B+1%?) 4% —223%%;  -28%% A543+ 1%lP) 6%
= = —~ = — — + — — — — — e
2|1%l2 + AZ/1%al2 + 1%al2l1 %ol AR FAREA AR AR "
1 22 (22 + I1%IP?) 22 B2+ %)
= o CT — — o2 122n—1 — T(X]_Xz + X2X1) + o Lt
2%l + 2% + 1%al2l%l2\  [%ll FAREA - 1%
2% %1zt
A2%all* + ABIZall* + 223 (1I%l1? + 1%]12 - 2%%)
= 122n71 (2152)
2114112 2015112 S 12112 112)Y 114 1121125112
(A31%all2 + A2I1%all2 + 1%l2l1%]1%) 1%l el
Therefore thék = 2 approximate charge density becomes
™ o ~ ~ il ~ 2n
Qb (4n)!Tr[a§||xZ||4+A§||x1||4+A§A§(||x1||2+||X2||2—2x'1x§) 2 ]
- = 2 - - - - - - n-1
¢ (A2I1%12 + A2[1%al12 + 1% 1211 %2l 2) 1R 121 Xol 2
2n
2)1%ll* + A2 %14 + 422 ([0l + 1%l 2 — 2%, %
:—(4n)!-22”‘1[ ! 2 5 : i%) . (2.153)
215112 2115112 1121155112
(A31%l12 + 221512 + 1%l 1% I1%)
k = 3 approximate charge density
We first calculate the inverce matrix &Y
24l%l? Al
EN =] Ml BHl%lP A
143 A243 A3+ 1%l
B 1
(A2 + 1%l12) (A2 + 11%2l12) (A2 + [1R6l12) + 2420342 — 22 (A2 + [1R6lIZ) — 4242 (A2 + [1%all2) — 422 (A2 + [1%e]I2)
1 1 2 2 3 3 17213 12\13 3 23\ "1 1 13\ "2 2
(22 + 1%2l12) (A3 + 1%al12) = 1222 A1dpA3 - 212 (A3 + [I%]1?) 21305 = 35 (A3 + [|%]1)
x| ds—ado (3 +11%6l2) (A2 +[IRal?) (A3 + IR6ll?) — 4243 A2AA5 — A3 (4 + [1%l?)
M85 - 45 (A3 + [1%I12) 2z - Aods (A2 +11%l?) (A2 +11%al?) (13 + 1%ell?) — 4243
(BlI%al? + A3l%I17 + [1%]121%1? — 1. 5][%] 2 — 1.5 %2
=y — 1. 5]|%] 2 A2||%1% + 3%l + [1%al?1 %1l — ][4 2 ., (2.154)
—131%|1? — 2231 %17 A%l + 3]I%al% + (1511l
_ 1
where y =

AZ1RAZI1%312 + A3|1%a 21Kl + AZ||%al 21Kl + 1% 12]|Rol 21| K] 12
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¢ becomes
b=1+ 2 PH 3 B 2115 P11%5]1? + 3|1l ?l1%al1Z + A3 KalPRal|? + [1%a] %1%l %1%l 2 (2.155)
%2~ N1%l2  [1%s][? (IX1l1211%21121 %312 '
Using above results,
o s 3]|%al1% + A3]I%|I% + ||X2||2||X3||2 —12]|%3] 2 —143]I%]?
rele, = (M8 5 XE)y A %l A2l + 1%l + 1% %] ~ A%l
HXl” HXZH HXSH 2 S 12 20e 12 2 2 2
—A143]|%|| — A2 43|l |[%]1? + 221Kl + 1%l Rl
/115‘({
TP
A% | i
X g |
/13)(3
Tl

Tﬂi(ﬂguiauz+42||xZ||2+||xZ||2||X3||)><“; “R2A2RRRR, A2 AR PR
= — —
%14 I%a12I1%2I 2 1%41211%] 2

—R2RAPRR A3 (A2l + AR + Kl PIIRa?) %y 225 PR,

%2l %I12 %" %121 %12
BARIPGR BG4 (A21%all? + AZI1%ll? + [1%a2]1% 12 )>§>”<g)
%2l el %112l %lI2 1%l K
21811l + A2 %1%l + 3Rl 1%l 2RI o oo
= T 1+ e (1%l + [1%2%) L — K% — K[ %)
FARTEARTEA RAREAREA
2315 222 1%]*
23 <(”)~( 2 o 12 oo ot e 13 S 112 S 112 ot St
— 22— ((I%ell® + [1%al1) Loz — Ko — %) + ——5——— (1%l + [|%al[?) Lozrs — Ko — K K3
RAREARTA 2 %Pl el P12 SR

3 1

X
(/1§||X2I|2||X3I|2 + A51%] 21Kl | + 31Kl %12 + 1%l 2| %l 2| Xal 12 )I|X1|I2I|X2|I2I|X3II2

219 1119118+ 12015 121114 1 2219 1219114 1+ 123219118 (119112 o 119112 5
(/11||X2|| IXsll™ + ASIXal"lIXsll™ + A5lIXall "1 Xall™ + A7 A5]IXs]| (I|X1|| + 1Xal| —2%{%2‘)

+ BA3IZ* (1% + 1%6l1? - 2%,%,) + AZA3/1%ll (1%l + %]l 2%;%;))122“. (2.156)
Therefore we obtain thie= 3 approximate charge density as

Q=3 - —(4n)! Tr[fﬂVeT ]
"

= —(4n)! - 22”'1[y(ﬂi||>~<2||4||>“<3||4 + BA3IZ* (%I + [1%all” — 2%,%,)
+ AN %all* + 5A301%ll* (11%all? + 1%612 — 2% %)
2n
+ AR 1%ell* + 5301 %all* (11%all? + [1%ll® 2%;%;))} : (2.157)

where 1
y = . (2.158)
(/1§||>~<2I|2||>~<3I|2 + /1§||>~(1||2||>~<3||2 + /12I|X1|I2IIX2|I2 + (%0211 %512 )

2.5 Clifford algebra and 4n-dimensional ASD tensor

We showed that therddimensional ASD basis (tensor) which played the central roles of the ADHM construcion was construct
from the (4 — 1)-dimensional Citord algebra. In this section, we consider theffGhd algebra and thenddimensional ASD
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m, —m. mod 8| &? Clm(R) | m,—m. mod 8| &? Clm(R)
0 + GL(2™2,R) 1 + GLEM™DZR) e GL2MDZ R)
2 - GL(2M2R) 3 - GL(2MD2 ¢)
4 +  GL(2Mm2/2 1) 5 +  GL@2M372 H) e GL(2M3)/2 1)
6 - GL(2Mm2/2 m) 7 - GL(@2MD2 C)

Table 2.1: The matrix rings GIN; K) which are isomorphic to the real @brd algebreCéy, m (R). Herem=m, + m_, N is the
matrix size and the symbal means the quaternion.

m mod 2 | Clm(C)
0 GL(22™.C)
1 GL(22™,C) @ GL(22", C)

Table 2.2: The matrix rings GI\; K) which are isomorphic to the complex €brd algebraC¢(C). Note thatw'is same
situation as the real one.

basis in more detail. In particular, we will give the explicit representations of the ASD basis by using the matrix representation
of the Clifford algebra.

Mathematically, a Ciford algebra is defined as an unital associative algebra that contains and is generated by a vector space
V over a fieldK, whereV is equipped with a quadratic forQ : V — K. The Clifford algebraC¢(V, Q) is the most general
algebra generated By subject to the condition

veV, ¥ = Q)L (2.159)

where the product on the left is that of the algebra, and the 1 denotes its multiplicative identity. The most impdftant Cli
algebras are those over real and complex vector spaces with nondegenerate quadratic forms.
Every nondegenerate quadratic form on a finite-dimensional space is equivalent ot the standard diagonal form:

Q(U):Ui+...+vﬁ'l+_Uﬁl,_+l_'.._vﬁ"l++nl’ (2160)

wherem = m, + m_ is the dimension of the vector space. The pair of integesif) is called the signature of the quadratic
form. The real vector space with this quadratic form is often derikfed™, and then the Ciford algebra o/R™ ™ is denoted
Ctm,.m_(R) which is called as “the real Gford algebra”. For simplify, we take a standard bdkj$ for R™ ™ which is consists
of m=m, + m_ mutually orthogonal vectom, of which square te-1 andm_ of which square te-1. In this basis, the algebra
Clm, m_(R) havem, vectors that square tel andm. vectors that square tel. The symbolC{n(R) means eithe€{no(R) or
Ctlom(R), we take the case that all signatures are negatW&s(R) = Clon(R) in this paper.
On the other hand, we can consider a complex vector space instead of the real vector space. In this case, the standard diagonal
form on the complex vector space is given by

Q) = vf + vg o2, (2.161)

wheremis the dimension of the vector space. In the complex space, the signature of the quadratic forntlisneotdi because
we can take the imaginary product of elemants> iv; anytime. Therefore, when we consider up to isomorphism, there is only
one nondegenerate @trd algebra for each dimension We denote the Cfiord algebra orC™ with the standard quadratic
form by C¢,(C), call “the complex Cliford algebra”.

A particular importance of the real and the complextohd algebra is that each of the algebras is isomorphic to a full matrix
ring with entries fronR, C or H. Furthermore this isomorphism has the periodicityrtdknown as “Bott periodicity”, and we
can completely classify the real and complextiolid algebras with using this periodicity. Here we definas”

O=T1..Tm=&%*=01...T)(1...Tm), (2.162)

wherel; € Cfn(K). For the Bott periodicity theorem [38], the rgamplex Clitord algebra exhibit an eightfolavofold
periodicity (Table 2.12.2).

For convenience in this paper, we will organize the {41)-dimensional Ciiord algebras again as following. Elements of
the realcomplex Cliford algebrd’ € C{n(K) (K = R/C) satisfying the relation:

l"il"j + F,—Fi = —25”', (2.163)
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4n-dim. mod 8 H C€4n,1(C) ‘ Cf4n,1(R)
4 GLZ™ 5 0) @ GLE™ L, 0) | GL(2*"2 H) & GL(2Z % H)
8 GL(22"%;C) @ L2 C) | GL(2*™%;R) @ GL(2™L;R)

Table 2.3: The matrix rings GIN; K) which are isomorphic to the (4— 1)-dimensional complex (real) @ord algebra
Cls-1(C(R)). HereN is the matrix size and the symh#ilmeans the quaternion.

where the indices j run from 1 tom. In m = 4n — 1 dimensions$, we can introduce the chirality elemantas

w= (D)™, Ty T € Con(R), (2.164a)
w =iM™S2Inr, T, T € Con(C), (2.164b)

where the symbalx] is the floor function (for examplg:2.8] = 2,|3] = 3). Here we define the overall factor of the chirality
elementw for later convenience. For the Bott periodicity theorem (see Tabel 2.1 and Table 2.2), we can decomposelhe (4
dimensional Cliford algebra by using the chirality element. The projection operator is defined by

P. = %(1 + w). (2.165)
UsingP.., we can decompose the €tird algebra as
Clm(K) = CL(K) @ CLL)(K), (2.166)

whereC¢$)(K) are defined by elements @¢m(K) projected byP.. We callC¢&(K) “the decomposed Gliord algebra”. Now
we choose the elements of the decomposefideti algebrd ™) e C¢{(K) that satisfy the relation{” = -1

Note that the elements of the decomposedi@iil algebra{” € C£{(K) satisfy the relatioi”, ¢} = -26;;, butT{*) are
not elements of the Gliord algebra. Because the elements of the decomposfidr@lalgebra are not the algebraic generators.
The algebraic generators have the property that each element of the algebra is not produced by a product of other element
iseej- - # & wheree, gj,...,a € Q(K) andQ(K) is an algebra on the field. The elements of the Glbrd algebrd’; are
algebraic generators, therefdiesatisfies the relatidnl’; - - - # I't, wherel3, T}, ..., It € Cfm(K). On the other hand, the element
of the decomposed Glord algebrd ™ does not satisfy the relatidif”r{") . .. # If), wherer™, {9, .. T{ e C{)(K).

We can construct thenddimensional ASD tens@fﬁ) form the (4 — 1)-dimensional Cfford algebraC¢4,-1(K). Here the
4n-dimensional “ASD tensor” means that the tensor satisfies the ASD relatiandim&nsions. We define thex4limensional
basise, by

& = 6uanl + 6,0, € = 6unl+ 6, (2.167)

where the indiceg, v,... run from 1 to 4. Using this basis, we define the-dimensional ASD tensor by
sM =ele, —€le, () =ee -ee. (2.168)
We can confirm tharffy) satisfies the A-dimensional ASD relation:

1
T B = iﬂ8a1a2_”aZHblbzmeHZEiz)z Lz (2.169)

Whereszv) satisfies the self-dual equation aﬁf@) satisfies the anti-self-dual equation respectively. We already showed that th
ASD basis which is constructed by above method satisfies the ASD relation at theorem 2.4.1 on p.33.

In order to discuss therddimensional ADHM construction in more detail, we need the explicit representations of the ASI
basis namely the matrix representations of the-()-dimensional Cltord algebraC¢4,_1(K). Fortunately, we already know that
the reglcomplex Cliford algebras have the isomorphism with the matrix rings. For the Bott periodicity theorem, we summari
the (4 - 1)-dimensions results into Table 2.3. This result is strong backbone to construct the matrix representations of A
basis. Although the higher-dimensional realffdlid algebra case is ftiicult in mathematically, we can represent the complex
Clifford algebra by the matrix in anyn4- 1 dimensions. Therefore we construct the four- and eight-dimensional ASD basi
explicitly as follows. Furthermore we show the matrix representation of the- (#)-dimenaional complex Gtiord algebra.

Sstrictly speaking, the case of the complexffdlid algebra is able t;m = 2n— 1.
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We note that the representationldf) is not uniqueness because there is the following transformation that holds the relation
{ri(i),r(ji)} = =20, 1pon1:

re o i@ = MrEm-, (2.170)
whereM e U(2%-1). Therefore we find that the ASD bagshas the following freedom for the representations:
e, & =MgM", € & =MeM™ (2.171)
We use the tensor product of the followingk2 matrices. The complex @ford algebraC¢y,(C) is constructed by the Pauli
matrices:
0 1 0 -i 1 0
O’l=(1 0), 0’2=(i 0), 0’32(0 _1), 0'0212. (2.172)
On the other hand, the real €brd algebra£{(R) are constructed by the following matrices [39]:
01 0 -1 1 0
Tl—(l 0), Tz—(l 0), ‘1'3—(0 _1), T0—12. (2173)

For simplicity, we omit the tensor (Kronecker) product sympah the following discussions. For example; meansr; ® oj.

The complex basis in four dimensions

We construct the four-dimensional ASD tensor from the three-dimension@@lialgebra. The matrix representation of the
three-dimensional complex @ord algebraC¢3(C) is given by

_ iO']_ 0 _ i0'2 0 _ i0'3 0
= ( 0 —io-l)’ T2 = ( 0 —i0'2)’ Ts= ( 0 —i0'3)' (2.174)
The chiral elemenb and the projection operatoPs. are
_ (2 O (L O (0 0
w = F1F2F3 = (0 _12) , P+ = (0 0), P_= (0 12). (2.175)
Using these matrices, we obtain
r® = tioy, (2.176)
wherei = 1,2, 3. Therefore we obtain the four-dimensional ASD complex basis:
€, = 'u412 - i5”i0'i, 82; = 5”412 + i5yi0'i~ (2.177)

This basis is just the quaternion basis which is used in the four-dimensional ADHM construction.

The real basis in four dimensions

For Table 2.3, the three-dimensional realffolid algebraC¢3(R) is isomorphic tdd @ H. However we use real matrix represen-
tation to implement the orthogonal gauge group. The real matrix representat@@g(B is given by

_[T12 0 _[T20 0 _[T32 0
ne(E 0) ne(3 O)n-(® ) ea7e
The chiral elemenb and the projection operatoPs. are
_ (-1 0 {00 (a0
w = F1F2F3 = ( 0 14) , P+ = (0 14), P_= (0 0). (2.179)
Thereforel ™ are
Fg_i) = FT12, F(zi) = FT20, F(ai) = FT32, (2180)
and we obtain the four-dimensional ASD tensor by using (2.167) and (2.168).
X -3 —x2 X
2 oxr oxE -2
Ha —
&=l 1 43| (2.181)

xox2 - ¥

If this real basis is used in the four-dimensional ADHM construction, the gauge group beGomexN).
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The complex basis in eight dimensions

Type | The matrix representation 6f7(C) is given by

_ i0'133 0 _ i0'233 0
= ( 0 —i0'133)’ Iz = ( 0 —i0'233)’ Is

i0'013 0
0 —ioos)’

Iy = (io‘gzs . 3023)’ I = (i0'801 . 2001)’ I = (io‘802 . (2002)’ I = (i0'833 . 2333)‘ (2.182)
Using (2.164b), the chiral elemedtis given by
= (1)1l aTalslgly = (1(;* _(ig). (2.183)
The projection operatof3, are
P, = (})8 g) P - (8 108) (2.184)

Therefore we obtain

I = tioygs, T3 = iocoss Y = tioos,

Ffli) = oz, r(si) = ooz, ngi) = ooz, l"(7i) = ioazs (2.185)

We now defineg; = % + ix}, Z = xX* +ix3, Z3 = x® + x5, Z := x® + ix” and these complex conjugate dengte ~

X —ix" —x8-ix> —x*-ix® 0 -x? —ixt 0 0 0
x®—ix> X +ix’ 0 x4 +ix3 0 X2 +ixt 0 0
X —ix3 0 ¥+ix! =X —ixs 0 0 *x2 +ixt 0
0 X +ixd xX-ix® -ix’ 0 0 0 -x? —ixt
Ha —
X6 = e —ixt 0 0 0 XB+ix" =xE—ixd x4 -ix3 0 (2.1862)
0 -x +ixt 0 0 x8—ix5  x®—ix’ 0 x4 +ix8
0 0 -x? +ixt 0 x4 —ix3 0 x®—ix”  —x®—ix5
0 0 0 x? —ixt 0 X +ixd xE-ixd  x®+ix’
Z -3 - 0 -z 0 0 O
Z % 0 % 0 % 0 O
Z, 0 % -z 0 0 % O
o & Z Z o o o -z| (B+C A
12 0 0 o0 % -m -n o |-A B+C) (2.186D)
0o -Z 0o o0 Z z 0 %
0 0 -Z 0 Z 0 Z -z
0 0 0 Z 0 -Z 4 %
whereA, B, C are the 4 complex matrices which are defined by
-z 0 0 O 2 -z - O z 0 0 O
< lo z 0o o - |2 0o o 2 < |0 % o o
A= 0 0% o0 B:= 2; 0 0 -2l C:= 0 0 Zz ol (2.187)
0 0 0 -z 0 -7 % o 0 0 0%

Type Il  Of course, we can take another matrix representation:

_ (io112 0 _ [io120 0 _([-io1z2 O
rl_( 0 —i0'112)’r2_( 0 —io'lzo)’rs_( 0 iUlsz)’

_ —i0'221 0 _ i0'223 0 _ —i0'202 0 _ i0'300 0
r4 - ( 0 i0'221)’ FS - ( 0 —i0'223)’ r6 - ( 0 iO‘zoz) ’ F7 - ( 0 —i0'300) ’ (2'188)
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In this case, the chiral elementbecomes same as type | thus the projection operators becomes same as type | also. Therefore
™ are

Fg_i) = ii0'112, F(Zi) = i—ia‘lzo, 1"(3*) = ¥i0'132,

ng) = ¢i0'221, F,(;) = ii0'223, Fét) = $i0’202, F(7i) = ii0'3oo, (2189)

The basis (2.189) is used to construct the Grossman’s one-instantons [31]. .
We now definez, == x! +ix?, 2, := X2 +ix®, 75 := X3 +ix®, 24 := X2 + ix” and these complex conjugate dengte

x8 —ix? 0 0 0 0 $C—ixt —x2+ix® - -ix?
0 x8 —ix’ 0 0 —x3 +ix8 0 xE—ix*  —x2—ix®
0 0 X8 —ix’ 0 X2 —ixt  —xt+ix* 0 —x3 —ix8
0 0 0 ¥oix! x+ix* X+ix® x3+ix8 0
X'e, = 0 XC+ixt —x-ixd xd+ix* B+ix’ 0 0 0 (2.190a)
—x3 —ix8 0 xE+ix* - +ix® 0 X8 4+ ix? 0 0
¥ +ix®  —xt—ix4 0 -3 +ix8 0 0 X8 +ix? 0
xL—ix* X-ix® x-ixt 0 0 0 0 X8 +ix’
Zz 0 0 0 0 Z -Z -z
0 z 0 0 -Z 0 7 -2
0 0 z 0 Z -Z 0 -z
0 0 0 ZZ y4} V4) Z3 0 Bf A
- ) =B, A). 2.190b
0 z - -z zz 0 0 0| \-A" B ( )
-zz 0 z -z 0 z 0 O
z -z 0 -z 0 0 z O
Z 2 Z 0 0 0 0 z
whereA, B are the 4 complex matrices which are defined by
R
-z 0 ! -7
A= Zzs i 201 o BEuL (2.191)

V4) Z Z3 0

The real basis in eight dimensions

The matrix representation 6f¢;(R) is given by

(1222 O (1012 O
Fl_( 0 —Tzzz)’ Fg-( 0 —7012)’ Ia

(T201 0 )
0 -0’

L= (Tf())32 —T?)sz)’ I's= (TBZO —Tcizo)’ Te= (T%ZO —T(?azo)’ 7= (T2003 —70203)' (2.192)
Using (2.1644a), the chiral elemedtis given by
w = (1)l aTal sl gl = (1(;3 _(is). (2.193)
The projection operatofB, are
P, :(t‘3 8), P_ =(8 12) (2.194)

Therefore we obtain

r(li) = £T22, r(zi) = £7012, ng) = £T201,

l"ff) = %7032, ng) = %7120, Fg_r) = *7320, F(7i) = *T203. (2195)
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B X X 2 X8 X
- 3 —x xXE x X —xt x®
x5 ¥ ¢ ¥ xS X8
i S D S S SIS D S
XE=|_y7 38 8 _yl 8 b 6 (2.196)
X Xk X X xE —x2 -x8
X X =3 X e xE —¢
- xd o X 2 X X 8

The complex basis irdn dimensions

There are systematic construction of the matrix representation of the compiotdéilgebras [40]. Using this constrution, we
obtain the (4 — 1)-dimensional decomposed fttird algebra:

ng) = i|0’§-l) ® 0-(32) ® ce ® 0-(32n_1)’ F(Zi) = -_HO'(Zl) ® 0-:(32) ® ctt ® O—gzn_l),
r¥ = sicP 0 oPe - 0 @™, ¥ =+icPeocP @ - @o?,
rs;g _ iio_gl) ®O'E)2) ®--® O_(lZn—l)’ nglz _ iio_(()l) ® 0_82) ®- - ®o-(22”_1),
1 =+ielleocPe - 0o, (2.197)

whereo are the Pauli matrices aney = 1,. These matrices are multiplied imaginary with the matrix as the Brauer-Weyl
matrices. The Brauer-Weyl matrix is often used as the higher dimensional gamma matrix in Physics.

2.6 The higher dimensional ADHM equation

In four dimension, we could rewrite the ADHM constraint with canonical form to more easily formal which usually called th
ADHM equation (1.52). Similarly, for previous subsection 2.2, we have found that the higher dimensional ADHM constrair
with canonical form are able to rewritten as the ADHM equations (2.42), (2.43) and (2.44). Thus we have the following questi
What is character of the ADHM equations in higher dimensions? Let us examine the higher dimensional ADHM equatior
more detail to solve this question.

In four dimensions, the property of the ASD basigras; = icikox (i, j, k = 1, 2, 3) is essential to lead the ADHM equation.
This property means that the ASD basis, which is the quaternion or the Pauli matrices, is closure under the multiplication.
fortunately the higher dimensional ASD basis which is obtained from tHEo€@lialgebra is not closure under the multiplication.

It is not straightforward that we algebraically lead the higher dimensional equation by the method as similar as the four din
sional one, but is benefitical to discuss the algebraic property of the ADHM equation in higher dimensions. We first considet
ADHM equation that is associated with the first ADHM constraint (2.42) is expanded as

1 1
T'T=¢€eeTT = (5,N122n1 + Ezﬁ)) ®T'T" =l @ T2+ ST @ THT". (2.198)
For (2.105) and (2.106a),
) = ele, - ele,
=2 (e;ev - 6”‘,122n71)
= 2{(6;4#122.171 + é}li’yi)(év#lzznfl - 6vj7j) - 6;“,122n—1}
= 2(5ﬂ#5y#122n—1 = 0u0,jVj *+ 00LiYi — 00y YiYj — 6;11/122”‘1)- (2.199)

In the case of four dimensions, the fourth term in above equation becgmes —oioj = —igijkok = —&ikyk (i, j k= 1,2, 3),

thus we algebraic lead the ADHM equations easily. On the other hand, in higher dimensions, the fourth term is not proporti
tovy;, i.e. the ASD basis is not closure , thus we can not lead a practical algebraic form of the ADHM equation which is simi
to the four dimensions one (1.52).
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Now we introduce the basis, which is defined by the multiplication of: {Xa} == {yiy;} (i # j). Moreover we define the
set of basigy; by the sum sets of; andX,:

(Y} = {yit @ (X} = tyit @ lyiyj). (i #]) (2.200)
Expand the ASD tensa;) with usingX,, Y:

2;(;/) = 2(6/4#61/#122”’1 - 6/4#6\/]7] + 6v#6yiyi - 6ﬂi6ijiyj - 6/1\/122“’1)
= 2(=0,s0, 7y} + vibyini + FnXe) " ¥i¥i = —1pza (nOt summed)
= 258y, (2.201)

where# 7, is a third-order tensor that is satisfy; X, = —d,id,jyiyj (u # v). Thus (2.198) becomes
T = L1 @ T2+ Yy @ TOTHT. (2.202)
Similarly, let us consider tha&'S term is expanded by suitable basZs.denotes the new basis which are satisfy as

S'S = 11 ® Sy + Y ® Sy + Z, @ Sy (2.203)
Here S, Si2), S3) arek x k matrices. By definition of5, for all S'S is able to written as7® € U(k) st. S'S = A, ® 7®
whereA, are the group elements of U{2') anda = 1,2,...,2%@ 1 _ |f four dimensional casen(= 1) thenA, are the group
elements of U(2), thudy, are just the four-dimensional ASD bai8,, = e, (1 = 1,2,3,4). This fact means that the ASD basis
e, spansS’S, namely, in four dimensions , we do not have to introduce the new Bagis(2.203). On the other hand, in higher
dimensionsif > 2), the ASD basi®, can not span§’S. This fact is easily shown as follows. If the ASD bais(and these
maltiply e,e,) spanS’S then the elements number of $&f-1} @ {Y;} equal as (or more than) the elements number of basis set
U(221). However the elements number of $btn1} @ {Y5} becomes & (4n— 1)+ (4n—1)- (4n—2)/2 = 8n* — 2n+ 1 and

the elements number of basis set 8(2) is 221 221 5 g2 — 2n + 1 in higher dimensionsn(> 2). Therefore the ASD
basis does not spai'S in higher dimensions(> 2). For this reason, we have been needing the new BastsexpandS’S in
higher dimensions.

Here we expand the first ADHM constraint with using (2.202) and (2.203),

TIT+S'S =101 ®EY = 11 @ T2+ Y @ T THTY + L @ Sty + Vs ® Sipy+ 2,88l = 11 ® E®,

= 1 8 (T2+Sw) + Yp @ (S THT" + 8)) + 2, ® Sy = 1o @ EY. (2.204)

thus we obtain

ZﬁS/Jr)THTV + 8/22) =0, (2.205a)
81y =0 (2.205b)

The first equation is a higher-dimensionalization of the four dimensional ADHM equation which is combined withettme
and theS term. On the other hand, the second equation is a new type equation with oSlye¢hm. Next, as one example, let
us lead the eight dimensional ADHM equation in explicitly.

2.6.1 An eight-dimensional {8) ADHM equaiton

In this subsection, we will lead an explicitly eight-dimensional ADHM equations with U(8) gauge group. Here we use the basis
(2.189).

Let us lead the explicit form of the ADHM equations which are associated with the first ADHM constraint (2.42), we call
these equations as “the first ADHM equations”. Now we re€al g, ® T# in (2.41), then the Weyl operator withoxterms is
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rewritten to

i :( St )
8181 ® Ty [8+8K]x[8K]
S, S, S3 S, Sg Se Sy, Sg
T8 —iT” 0 0 0 0 T3—iT® —T24iT> -Ti-iT?
0 T8 _iT7 0 0 —T34+iTS® 0 TI-iT4 -T2-iT®
0 0 T8 _iT7 0 T2_iTS —Tl4iT4 0  -T-iT®
= 0 0 0 T8 —iT” TL4+iTA T2+iT® T3+iT® 0
0 T34iT6  —T2-iT5 —Tl14iT* T8+iT’ 0 0 0
-T3_iT*® 0 TL+iT4 -T2+iT® 0 T8 +iT7 0 0
T2+iT> -T1-iT* 0 —T3 +iT® 0 0 T8 +iT” 0
TI-iT* T2-iT® T3—iTS® 0 0 0 0 T8 4+iT”

St S; Sz Si S5 S¢ S7 Sg
L, o o o0 o0 L -l -L
o Lj o o0 -l 0o L -L
0 o L 0 L -l 0o -Ls 1 BIxAK 22 [8]x[4K]

=0 0 0 th, L L L O0|=]|& (4] Eipg |, (2.206)
0 Ly -l -l L& 0 0 O Elwg  Eem
L3 0 L -L, 0 Ly 0 0
L, -L4 0 -LI 0 0 L O
Ll L L o o0 0 0 L

where the matrix subscripg] x [b] means the matrix size, and we have defined.as= T! +iT*, L; := T2 +iT> L3 :=
T3+iT6, Ly := T®+iT’. Now we recall thal* is Hermite, thud | = T* - iT*, Lg := T2 —iT®, etc. We have defined by>84k
matricesX; , and & x 4k matrices=, , as follows:

21 = (Sl SQ 83 84), 22 = (85 SG S7 Sg),
0 L -L -L L, 0 0 O
-Lf 0 L -L 0 Ly 0 O
Ei=| 8 . 1 . Ep= =1LeL 2.207
YT oL 0 -Ls 2510 0 L, 0| ®H (2.207)
L. L Ly O 0 0 0 L4
Similarly, the conjugate of the Weyl operator withouterms is
AT=(S" € eTH)
S L, 0 0 o0 0 -Lf LU L
S, 0 Ly O 0 L 0 -L L
S, 0 0 L& O -L) LI 0 L
/sy 0 0 0 L -L -L -l3 O
St 0 -Ls L L L 0o o0 o0
S, Ly 0 -L +L o L} o o
s% Lo Ly oT Ly, o o0 L, O
s, -LI -Lj -Lf o o o o0 L}
(B = 2.208
- ZT =t =7 | ( ' )
2 1 =2

For (2.206) and (2.208), the I.h.s. of the first ADHM equations (2.42) become

\g]

S TITAfic (5 B2 51 E% 2| (Ehss 4 2B + BB Sl + EE - EiE, 9209
+ - - ZT =T =T =2 =11= ZTZ + ==t =it ZTE + =T= + =t=_ ] ( . )
2 =1 =2 _EI = 241 T == T = 252 T ==l T =2
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For convenience, we introduce thkex 4k matrix X and decompose the first ADHM equations as
AA=10E" = (A'A=1,8Xug and X = 1,0 EY) (2.210)
For above equation, (2.209) becomes
A+A =13® EI((l’S) — (A+A =1Le® X[4k] and X=1;® El((l’3)>
2;22 + EzEl — =1 = O
= {33+ BE) + B8] = =%, + BlEy + )5,
SIS+ EoE) + EiE] = L@ B,
[E1,E2] - Zi%, =
& {[E1,El] + [, E]] + z*zl -3, =0, (2.211)
ZTZJ_ + _‘2_‘T + _.1._. =14® E(l %)

1 [
[x] [1]

1]
—+ = N

O

First we expand the first equation of (2.211):
[E1,E2] -2i5, =0 & Ei(Li®Lls) - (La®Ly)= -2 =0

0 [LhLd ~LhLd -[Luld) (S;Ss S;Ss S;S7 S;Ss
“[LyL] O (Lol Lo Lad| |SSs S;S6 S;S1 SiSe|_ (5219
L, La]  —[L],La] 0 —[Ls.La]| [S3Ss S3Se S;S7 S;Se
[Li,La]  [Lo,La]l  [Ls, L4] 0 S,Ss S,S¢ S,S7 S,Ss
Next we expand the second equation of (2.211):
[E1,El] +[E2,E]] +2]% - 215, =0
[LL La] + [|—2, La] +[Ly, LI] L Li] - [LS, La] [La, L] - [L%, Li] [L2, L3] - [L', %
— [La. L] - L], Le] N R R R (A I G R O [La, La] -
[Ll’ L ] [L17 L3] [LZ’ L3] - [L ’ L3] [L ’ L2] + [L19 Ll] + [L37 L3] [L29 Ll] [ 2° ]_]
—[L5, L] +[La, Ls] [L], L3l = [Ly, Lg] —[LL L] + Ly, L] [La, Li] + [Lo, L] + [La, L]

§&—%& SiS,-S{Ss SIS;-S{S; SiSi-S[Ss
SIS1-S.Ss S;S2-SiSs S,S3—S.S7 S,Sa—SiSs

Ls L} 2 2 6 2 6 2 68| = 0.
+MM4’J+%&—£% S'S;-S'Ss S.Ss-S'S; SISi—SSg
S;S1-S.Ss S.S2-SiSs S,S3—S.S7 S.Sa-SiSs
(2.213)
Finally we expand the third equation of (2.211):
2121 + ._‘2_‘2 + _.1._1 L® E(l %)
~LiLg— Ll — Lyl [L, L] L} La] (L), L]
— _ [L:,LZ] —LgLs—LT'lLl—Lz, L [LT,TLZ] T [Ls, L]
[L;,L3] [L), L3] —Lylo—LjLg - Lalg —[L5 L] i
~[L2, La] [L1. Lg] —[L1, L2] —Lal] - Lol - LsL ]
%& %& %& %&
« |Sis: Sls, sls; sis, 13)
Ll 2 2 2 224 =1, 0 EM,
rlelldrigs Sfs, sis, sis,|T 4O
S;S1 S,S: S;Ss S,Sa
(2.214)
We obtain the following equation since the diagonal components of (2.214):

2, L] —[Ls, L] +S/S4—Si{S; =0, - [4,4] - [1,1] components 215a
[La, L] — [Ls, LY + SiSa—SIS1 =0 [4,4] - [1,1] (2.215a)

3 — L1, N+ 4~ : 2 =0, 14, 4] - 12, 2] components .
[La, LY — [L1, L] + SSa - S}S, =0 [4,4]-[2,2] t (2.215b)

[Li, L] = [Lo, L]] + S}Sa - SSs =0, + [4,4] - [3, 3] components (2.215¢)
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and since thefs-diagonal components of (2.214):

[Li, L]l +S]S; =0, [Li,Lo] +S}S3=0, [Li, L] +S]Ss=0,
[La,L3] +S;S1 =0, [La, LY +SiS3 =0, [Ls, La] +S}Sz = 0. (2.216)

Insert this result into the [2] component of (2.213):

[L) L] - [Lo, L] - SIS, +S{Sg =0 & [Lp LI1-S[Se=0, -~ [Li,Lj]+SIS;=0
il
= ([LzL]]) -S{ss=0,
N—————
=[LiL}]=-SS;
& S[S5=-SIS, & S[Ss=-S]S,. (2.217)

We take same calculation for the othéf-diagonal components:

S{Se = -S}S1, SiS7=-S[S, S{Ss = -S]S1,
SiS7 = -SIS, SiSs = -S;So. SiSg = -S;Ss. (2.218)

Next we consider the diagonal component of (2.216).

—[Ly, Li] + [La, L] + [La, L] — [La, L] - SIS1 + S{Ss = 0, (2.219a)
[Ly, LI = [Lo, LI] + [La L] — [La, L}] - S;So + S{Se = 0, (2.219b)
[Ly, L] +[La, L3] — [La, L]] — [La, L}] - SiSs + SiS7 = 0, (2.219c)

—[Ly, L] = [La, L] = [La LY] — [La, L] - SiSa+ SiSe = 0, (2.219d)

Now we can rewrite the two equations in the above equations to includindgsaelyn with using (2.215). For example, we take
(2.219a)- (2.219b) and then using (2.215), thus we lead the first following equation:

2(S}S2 -~ S}Sa) + S{Ss— S[S1 - SIS7 +S{Ss =0, -+ (2.219a)- (2.219c) (2.220a)
2(S}Su—S[S1)+S{Ss— S}S2 — SIS7+S{Sg =0, - (2.219b)- (2.219c) (2.220b)

Finally we consider (2.212), but cannot rewrite this equations in more simplify.

[La, L1+ SIS7=0, [La,L1] + S}Ss =0, [La, L] + 5255 =0,
[La,L2] +S;Se =0, [La, LY +SISe =0, [La, Lg] + S}S7 = 0. (2.221)
and
SiSs =0, SiSe =0, Si{S7=0, SiSs = 0. (2.222a)
S}S7 = -S]Ss, SiSs = -S|Ss, S{Ss = -SiSy,
SjSe = —S;Ss. SiSe = -S;Ss, S;S7 = -S}Ss. (2.222b)

We now obtain the ADHM equations, and can roughly decompose these equations into two types: firstly the equations
combinelL(T) andS namely (2.215), (2.216), (2.219¢), (2.219d) and (2.221), secondly the equations that cont&manigly
(2.218), (2.220) and (2.222). We assume that the origin of the equations that conta# jantts is the outer parts &S to
the basisy. Let us prove this assumption as following. Thus we shall show that the assumptichithable to expanded by
the basis,, namelyS's = (e ® ST)(ev ®S,), lead to (2.218), (2.220) and (2.222) as follows. Derdie:= S; +iSs, M, =
Sz + |S5, M3 = 83 + ISG, My = Sg + |S7 andMl = S]_ - |S4, M, = Sz - |S5, M3 = 83 - ISG, My = Sg - |S7
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(€ ®S)e®S,)
Vil i S VAW v Vi
M 0 00 0 =My M, Mpem, 0o 0 0 0 Mg -Mp -M
0 M, 0 0 M 0 -M Millo ™M, 0 0 -Mg 0O M -M
o 0 M 0 -M; M 0 M0 0 Mf¢ 0 M -M 0 -M
o o o M -M -Mj -M, Ooff0 O 0O Mg My My Mg O
o -m M M oM o0 offo0 Mgz -Mp -M; My O O O
M 0 -M M) 0 M] of|I-Ms 0O My -M; O Mg O 0
M, M o M, o o M ofM -Mg O -Mg O 0O Mg O
i i i ALY M M 0 0 0 0 M
-M; -M; -M; 0 0 O M)t M M 3 Ml )
M MMz~ MiM;  MiMs—M;M; MMz — MjMs 0 MiMg—MIMs MiMs—MiMz MMy~ M;
MjMp—MIMz Mo MIMs—MiM;  M;Mg—MIM;  MIMs—M;Mg 0 MiMi-MM; M]Ms—M,;
MM - MM NGV - MM Ms  MMG MM MM MMy MIMG-WOMG 0 MjMa- M,
B VAV VA e 1 P V4V V¢V M V)4 VAR v VA V)4 VR vV
1o MiM3z - MaM{ M]Ms— M;M, MMy — MjM; Ms_ M{Mg—MjMi M;Ms-M;M; MM, - M]
MiMs—M;Ms 0 MMy — M Ms - M;Mq = MyM; - MMy — My My Ms_ _ MMs—MiMp MMz — M,
MjMp— MM WIMG - MMy 0 MgMa—MMs MoMs— MM MIMo—MINMs My NpMy— M,
MiM; - MiMg MMz - MjMs MMz - MiM, 0 MIMz — MM,  MIM; - M/M3 MM, - MIM; Mg
(2.223a)
My = MI My + MMy + M{M3 + M} My, Mo = MIMy + MMy + M{M3 + M} My,
— M i Y Vi Yy} — MM YiIvi 1T M. Yl v}
wher M3 = M1M1+ |\42|\42+ |\43M3+ M4M4, M4 = '\41'\414- M2M2+ '\43|\43+ M4M4, (2223b)
5 = MMy + MIM, + M{M3 + M} My, M = M] M1 + MMy + MMz + M} Mg,
Mz = MIMy + MMy + Mi M3 + M} Mg, Mes = MIM1 + MMy + M{M3 + M} Ma.
SiS, SIS, SiS; SIS, SiSs SiSe S!S; SISg
SiS1 S,S» SiSs SiSs SiSs S;Se S,S7 SiSs
SiS1 SiS; SiSs SiSs SiSs S;Se S.S7 SiSs
T T T T T T T T
_ 5;151 54%52 54%53 54%54 54%55 54%56 54%57 54%58 _s's, (2.2230)
SiS1 S.S2 S;Ss S.Ss S.Ss SiSe S.S7 SiSs
SiS1 SiS» S[Ss S.;Ss SiSs S.Se SS7 S.Ss
S!S; SIS, S!S; S!Ss SISs SSg SiS; S!Ss
SiS1 SiS» SiSs SiSs SiSs S;Se SiS7 SiSs
Now we compare (2.223a) with (2.223c), and then we obtain the following relations.
SiSs=S}Ss=S;S7=S,Ss =0, (2.224)
these relations are just (2.222a) and
SiSz = ~S(Ss, SiS4 = -S;Ss, S}Ss = -S!Ss, SiSe = -Sisy,
SiS; = -SiSs, S}Ss = -S]Ss, S{Ss = -SiS;, SiSe = -S;Ss, (2.225)
$;83 = -S;Ss, $3S4 = ~SgSv. S}Ss = -S;Ss, S;S7 = -S;Ss,

these relations are just (2.218) and (2.222b). For (2.223b) (and (2.223c)), we obtatin (2.220) also.

Therefore we found that the first ADHM equations more simplify when supBose, ®§,,. Now the obtained first ADHM
equations is complex representations, thus we rewritten to the real representations by réviatingMoreover we note that
[TH, T"] becomesT#, T"] because we can drop thx& terms which are the identity matritg. Hence we obtain the first ADHM

M3
M2
My

M3
M1
M;




2.7. HIGHER DIMENSIONAL CALORONS

equations under supposify= e, ® §”:

[TLTY +[T%T

S3 -

S3 -

[T2 7% - [T%, 6]+2(s1s4—sisl) 0,

[T3,T®

[T, T4

[T T

S; - SIS

S}S7 - SIS,
S{Ss - S{Ss
SiSe-S

S}Ss - S{S4

_[Tl’ T4] -
[TLT2 +[T* 5]+% Sif
[TLT3] +[T4T +% s
[T2, T3] +[T>,T +% Si
[TLT2 - [T4T +% SiSs -
[T2, T3 - [T>,T +% SiS1-
[T3,TY-[T8 T4 +%
[TETYH+[T, T+ 1
2
1
2 7 -
[ T +[T, T + >
1
T3 T -
[ T +[T,T°] + >
T8, TY - [T". T4 +%
[T& T2 - [T", 7% + = (S}Ses -

[TE, T3 - [T7. T8 + > (sfs7 SiS4) =0,

(
(
(
(
(
(STS2 ~ SIS,
(
(
(
(
5

SS4

5] - [T37 T6] - [T87 T7]

T-IT T - [T5T7] -

1-[ThT + (3*34 S1S2)

0

1-[T2T%+ 5 (sTs4—sng) 0,

[T, T4 +[T". T

)=0. [TL T - [T4 T
1S1) =0, [TL T8 - [T4T9
1S2) =0, [T2, 76 - [T%T9
1S4) =0, [TLT5] + [T4 73 -
1S4) =0, [T2T9 +[T5, T3 -
)=0. [T, T4 +[T8,TY -
)=0. [T, T4 - [T, TY
)=0, [T8,T% - [T". T
iS1) =0, [T8,T6 - [T, T
) T -
)=

0, [T8, T3 +[T7,T?

i

(s*s3 - Sis7)

+

1
(s
(s
(s
(s
(s
(s
(s
(s
(s
5 (5,

0,

(STS4 SiSs) =0,

SIS, +S]S:) =0,

SiS; +S[S;

1S3+ SIS,
1S3 +S[S4

1S1+S]Ss
1S2+SS4
287
1S5+ SiSs

+

1S6 +SLS1

1S5 +S{S4
+

1S6 +S{S4

)
)=
)=
)=
)=
)=
Sis,) =
)=
)=
)=
)=
)=

[T8 T8 +[T7,T% - —(s S7+5SiS,

0,
0,
0,
0,
0,
0,
0,
0,
0,
0,

0.
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(2.226)

(2.227)

(2.228)

Next we lead the ADHM equations which are associated with the second ADHM constraint, we call these equations as
second ADHM equations”. It is straightforward that we lead the second ADHM equations. The equation (2.43) stand with

change:

fTH = THE.

The equation (2.44) is satisfied if and only if the following equations is satisfied:

Note that | mistaken the second ADHM equations in [25], there is an omission of some equations.

[TX,T]1=0

2.7 Higher dimensional calorons

In this subsection, we consider higher-dimensional calorons and the monopole limit.

(2.229)

(2.230)

It is well known that the Harringt

Shepard (HS) one-caloron in the four dimensions can be generated by the 't Hooft multi-instantons that are periodic in

of the four coordinates [13].

Can we generate a higher-dimensional HS type one-caloron with the same method in the
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dimensions? Let us discuss this question in the following. We will use the multi-instantons to produce the HS type caloron.
However, the 't Hooft type multi-instantons in the higher dimensions are well-defined only if we assume the well-separated limit
(2.68). Therefore we use the 't Hooft type multi-instanton with well-separated on the periodic coordinate directi®hto
produce the higher-dimensional caloron.
We consider the situation that same size 't Hooft type one-instantons are lined up xif-tiection with well-separated.
This gauge field is given by
A9 = 72806, brsoon (9. (2.231)

where
P

GrHooft(X) = 1+ Z

p=—P

/12

. 2.232
I — a2 + (xn — a")2 (2:232)

HereA € R is the instanton sizes = X (i = 1,2,...,4n— 1), a, € R* 1 is the instanton’s position (without thé"-direction)
andag’ € R is the positions on th&*-direction. For the well-separated limit (2.68), tk-direction positiora}’ satisfies the
condition: @5" — ag")? > A2 (p # ).

Now we choose the"-direction positions}" = a — p3 (a3 € R), and we take the limiP — co and thex"-direction to
periodic direction with the periodicit§ asR*" — R*"* x S*. This situation replace the well-separated limét{(- ag’ll)z > A2
for all p) to the condition of the sizé and the periodicitys:

B> A (2.233)

In addition, ¢+ poott (X) becomes

e

/12
im ¢ hoort(X) = 1 +
1M ¢ Hoott(X) p;m X — axll? + (t — (& — pB))>

= 1
-1 +Iu2/12 s (2.234)
p;m 12X — a2 + (u(t - &) + 2p)’

whereu = 2r/B. Note that we demand the condition 2 4?42 from 2 > A2, but this condition does not have an influence on
that we take the factqr-2 from the dominator. Now we use the formula:

N 1 sinha
Z a + (b+2rp)2  2a(cosha— cosh)’ (2.235)

)=—00

then a gauge field of the HS type one-caloron in the higher dimengiong] is given by

1 nA? sinh(2er /) .
= >389, In(1 = h . 2.2
A 4 % n( " Br (cosh(zr /B) — cos(zt/B)) )’ with 5> 4 (2.236)
Herer = /(x — a2, f = x* —a’, for anya® € [0,5) and the index = 1,...,4n - 1. The condition3 > 1 means that the

caloron’s size modulug is much smaller than the periodic coordinate gizéence we call this condition (2.233) as the small
size limit.
In four dimensions, the HS one-caloron becomes the gauge-equivalent to the BPS one-monopole when we take the limit
B/2nAd — 0[41, 42]. On the other hand, in the higher dimensions, the HS type one-caloron requires the small $z¢ bmit,
hence the monopole limit/271 — 0 is evidently inconsistent with this limit. Therefore we can not take the monopole limit for
the HS type one-caloron in higher dimensions.
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Chapter 3

The Skyrme model in four dimensions

In this chapter, we review the Skyrme model in four dimensions.

The Skyrme model [8] is a model for hadrons in the low-enef@igotive theory of QCD. The model is a four-dimensional
non-linear sigma model whose target spacgds- SU(2), and composed of the fourth order derivative term in addition to the
canonical kinetic term. The fourth order derivative term guarantees the stability of solitons of co-dimension three, which
called Skyrmions. The Skyrmions are characterized by the homotopy§&9(2)) = Z and they are regarded as Baryons.
The energy functional of the Skyrme model has the Bogomol'nyi bound given by the topological charge associated with
homotopy. This topological charge is identified with the Baryon number. However, no analytic solutions that saturate the lo
bound of the energy have been found soYfaThere have only been obtained the numerical solutions of Skyrmions, whict
indeed exceed the energy bound. This reflects the fact that the original four dimensional Skyrme model does not have the
property.

Finding proper solutions of Skyrmions is a long standing problem. There are several directions to construct solutic
For example, the rational map ansatz provides a good approximation to the Skyrmion solutions [46]. This includes solut
corresponding to higher Baryon numbers. Although they can not saturate the energy bound, the rational map solutions
close energies to the normalized Baryon charges. Alternatively, there is another promising approach to Skyrmions known &
Atiyah-Manton construction [10]. Atiyah and Manton pointed out that the holonomy of the Yang-Mills instantons in the fou
dimensional Euclid spacegives a well approximated static Skyrmion solutions. Although, the origin of this approximation is
not transparent, a physical interpretation to the Atiyah-Manton construction of Skyrmions was discussed in [48, 49].

Even though the Skyrmion solutions are well-approximated by instantons, they never saturate the Bogomol’'nyi bound of
energy. In order to understand the obscure connection between the Yang-Mills instantons and Skyrmions, we need further
trating analysis. In this context, inspired by a holographic QCD model [51], it is proposed a systematic derivation of the ene
functional for the static Skyrme field from the Yang-Mills action in four dimensions [50]. In the derivation, the introduction c
the tower of mesons originated from the Kaluza-Klein-like expansion modes in higher dimensions makes the Atiyah-Mar
solution have closer energy to the bound [52]. Therefore, including the higher expansion modes in the Atiyah-Manton solu
leads to the better approximation to the Skyrmions. Moreover, this relation is generalized to lower dimensions. For exampls
analogue of the Atiyah-Manton construction in two dimensions is proposed [53, 54] where the sine-Gordon soliton solutio
one dimensions is well-approximated by thE*-lump — the two-dimensional instantons. These facts remarkably suggest the
there is a deep correspondence between instantons or solitons and Skyrmion-like objects in various dimensions.

The organization of this chapter as follows. Section 3.1 is introduced the Skyrme model and single Skyrmion. Section 3
reviewed the Sutdiie’s truncation method which is leaded the Skyrme model from the (pure-)Yang-Mills action. Sectoin 3.3
reviewed the Atiyah-Manton construcion.

3.1 Skyrme model and hedgehog ansatz

The action of Skyrme model is defined by

2
Ssky = fd3xdt(—fZ”Tr(RlR,)+ %Tr([&ﬁv]z)) G.1)

1This is not the case for Skyrme models in curved spaces. For example, see [43, 44, 45] and references therein.
2The case for the curved spaces was discussed in [47].
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wherew,v = 1,2,3,4,R, = Ug,Ut andU(X) € SU(2) is called as the Skyrme field. The dimensionless constantalled
as Skyrme parameter, arigis pion decay constant which dimension fg][= [L™!]. Now we take the rescalings of the length
X — (f,€)~1x* and the overall factor of the Lagrangian- é—gL, then we obtain the dimensionless Skyrme model:

1 1
_ 3 2
Ssky = fd xdt(—ETr(R“Rﬂ) + 1—6Tr([R,,, R] )). (3.2)
The Euler-Lagrange equation of this Lagrangian is
1 )V
0, R+ Z[R JRLGRT | =0. (3.3)

Although this time dependent Lagrangian is original model which was given by Skyrme, we consider the time independent
Skyrme model which has topological soliton, known as Skyrmion.
The time independen Skyrme model is given by

Eskyrme = f d®x (——Tr[R.R.] 16 R Ry] ) (3.4)

We call this static Lagrangian (energy functional) as the (static) Skyrme model in the following. The Bogomol’'nyi completion
of the energy functional (3.4) gives the energy botiad,me > 1272|B| whereB is the topological charge, namely, the Baryon
number:

B= ~ 54 fd X &k TIRRjR], (3.5)
wheres;j is the Levi-Civita symbol. This BogomololI'nyi completion is easily shown as follows:

2
\/_R * i-/ésukRJRk) >0 Tr(}R@Ra + }(5{5; - 6!,16:‘)R,-RkR'Rm) + 2%gi,—kTr(RiRij) >0

1
= Tr(R.R.)+—Tr([R. R = :EsijkTr(RRij), (3.6)
where we using' ¥, = 6|jdkm - 6,jnélk andRRRIR¢ - RRRR = 1(RjR« - RR))? = 3[R}, RJ?. The equation of motion
derived from (3.4) is

1
(R - IR\ IR.RI) =0 @)

No analytic solutions to this equation (3.7) have been found but a spherically symmetric solution is dealt with the following
hedgehog ansatz:

U = exp(if (N&oi). (3.8)

Herex = é' r> = Xx ando; are the Pauli matrices, namely, the quaternion basis. The energy functional for this ansatz is
evaluated to be

ESkyrme:f drf ngS(I’)-Zﬂf dr(2(6rf)2+23|nzf(1+(6rf)) sirf f). (3.9)

Here &(r) is the energy density ardk), is the integral element of the two-dimensional sphere. The equation of motion with
hedgehog ansatz, sometimes we call this equation as the Hedgehog equation, is

(r? + 2sir? £)92f + 2r, f + sin 2f ((ar f)? -

sir? f
-2 ):o. (3.10)

Moreover, substitute the hedgehog ansatz (3.8) into the topological charge (3.5), then we obtain

B= }T(f(O)— f(c0)). (3.11)
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25 3.0

(a) The profile for 4d Skyrmion. (b) The energy density plot.

Figure 3.1: The numerical profile fdi(r) and the plot for the energy densijr).

Now we consider a single Skyrmion, namely BBe- 1 Skyrmion, thus the boundary condition is givent{) = r, f(c) = 0.
The numerical study is easily performed for this ansatz. The solution to the equation of motion (3.7) with the ansatz (:
is found in Fig. 3.1. We insert this numerical result into the energy functional (3.9), and then the energy is calculated tc
E = 1.2314x 1272, to four decimal place. Therefore tle= 1 Skyrmion exceeds the Bogomol'nyi bound, sometimes called
BPS bound, by approvimately 23%, namely the Skyrmion is not BPS soliton.

In the following, we will mention how the existence of the numerical solutions in (3.10) is guaranteed. For later convenien
we now rewrite the Hedgehog equation (3.10) by multiplyifign both side:

r2(r? + 2sir? £)07f + 2%, f + sin 2f (r?(9, f)? - r? - sir? ) = 0. (3.12)

Consider analysis of the profile function at the origjrto examine the existence of the numerical solutions. Let the profile
function be smooth, namelf(r) is classC®, and then the Tayler expansion around origin becofi{gs) = Y., fm(ér)™ =
fo + f16r + f2(6r)? + ... Using the chain rule, the expansion of §{n) around origin becomes

sinf(sr) = i M| (6r)™ = sin fo + cosfy - f16r + }(— sinfo - f2 + cosfy - 2f2) (6r)% + (3.13)
e 5 ; .

m=0

After similarly calculate the expansion of sifi@) around origin, we write down the equations for the flic&ents f,, by substi-
tuting these expansion and decifigfor the equations of each ordeir]™ to be zero. Specifically, the zero ordér)? becomes

fo = (1
sin 2f sir? fo = 0 { 0=(z+n) (3.14)
fo = nx.
The first ordewr becomes
(—cos 2y + cos 4fp) f; = 0, (3.15)

Now we takefy, = f(0) = x to consider the single Skyrmion, thiigis free parameter. In the following, we take these conditions.
The second and third order& J?, (6r)° become zero automatically. The fourth ordémt becomes

(1+2f2)f, =0, (3.16)
thus we obtairf, = 0. The fifth order ¢r)° becomes
213+ 2
15(1+2f2)’

3strictly speaking, we have to consider the analysis at the infinity also, but now we treat only the origin for simplify.

23+ 2+ 15(1+ 2f)f3 =0 & f3=- (3.17)
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Similarly we can decide the higher order €iodents f,, by calculating order by order i )P, and then the expansion of the
profile function around the origin is given by

263445 f5(10+ 1612 + 111} + 14fF)

15(1+ 2f7) o 350(1 + 2f2)°

For this result, we find that the higher order fla@entsf, (m > 2) is written by lower order cdicientsf, and f;. Note that we

have been takindy = n thus fy does not appear explicitly in the expansion (3.18), but the higher ordéiaiests essentially
dependfy also. By the way, thath ordinary diterential equation needlboundary conditions to decide solution uniquely. In

other words, it is needed thatfree parameters existence when the series expansions of unknown function. Now recall that
the hedgehog equation is second order ordinaffigintial equation, thus the series expansions need two free parameters. For
(3.18), fo and f; are free parameters thus this condition is satisfied. This fact guarantees the existence of (numerical) solution in
(3.10). In contrast to this, if above free parameters condition is not satisfied then a solution with the boundary condition does not
existence in generally.

f(or) = n+ fror -

(or)®+0((6r)"). (3.18)

3.2 Overview of the Sutclife’s truncation in four dimensions

The four-dimensional energy functional for static fiéld$ the Skyrme model is obtained by a reduction of the usual quadratic
Yang-Mills action in the four-dimensional Euclidean space. The action is

1 1 4 v
S = _ZK_g2 fTI'[*4F AF] = _ng fd X Tr[F, F*]. (3.19)

HereF = %Fﬂvdx" AdX, (u,v = 1,...,4) is the gauge field strength 2-form. The component is givefrRy= J,A, —

0,A, + [A, A)]. The gauge fieldd, is in the adjoint representation of a gauge gré@upnd it is expanded by the generators

T2 (a = 1,...dimgG). Hereg is the Lie algebra associated wit and « is the normalization constant for the generators
Tr[T2TP] = x6%°. Hereg is the gauge coupling constant. Making the action (3.19) be the completely square form results in the
Bogomol'nyi-Prasad-Sommerfield (BPS) self-duality equafios =4,F whose solutions are called instantons (see section 1).
Since the Yang-Mills action (3.19) has the scale invariance, instanton solutions that saturate the Bogomol'nyi bound have a size
modulus.

It is proposed in [50] that a holography-inspired reduction of the four-dimensional Yang-Mills action (3.19) provides the
energy functional for the static Skyrme field. Following the prescription in [50], we first decompose the four-dimensional
Euclidean space into the three-dimensional physical space and a “fictious” dire¢tien(x', x*) wherei = 1,...,3. We then
expand the four-dimensional gauge fidg(x', x*) in the infinite line along thex*-direction by a complete orthonormal basis
with the square integrable function. A suitable basis with the boundary condiiignx*) — 0 asx* — o is a Hermite function
5.

Um(2) = _CD" 20 2 (3.20)

Jmizmyz 947

Then we have an expansion,
AR XY = A (KXY, (3.21)
m=0

Whereﬂflm)(xi) are expansion cdicients, which will be determined later. Next, we perform the gauge transformation by which
the componend is set to be zero. By this gauge transformation, the components of the gaugg feetchnsformed as
A — GAGH+§oig (3.22)

where the gauge parameteisgiven by

x4
g(x, x*) = —Pexp f dé¢ A4(xi,§)}. (3.23)

4We sometimes calll this the three-dimensional action in Euclid space.
5Note that this definition of the Hermite functionfiéirs the weight from the usually definition, thus a orthogonal condition of this definition becomes
f_m dzym(2¥n(2) = Smn.
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Here the symboP stands for the path-ordering. The asymptotic behavior of the Hermite fungtien) = 0 and the boundary
conditionA;(x', c0) = 0 determines the gauge fiefd(x', x*) in the gaugeds = 0. This is given by [50],

00

A X = GO + WO m(XY), (3.24)
m=0
wherey,(2) = 1 + %erf(z/ V2) and the error function is defined by ejfe % fozdg e¥’. The gauge field is decomposed into
the “zero-mode’u(x'):

u(x) = Ugu, U(X) = §(X, x* = ), (3.25)

and the infinite tower of the vector fielwm(xi). The zero-mode(X') is identified with the Skyrme field while the higher modes
W?"(x') can be interpreted as “vector mesons”. This analysis is completely parallel to the Kaluza-Klein reduction in which a fi
is expanded by the Fourier mode’8'/2R along the compact circle® ~ x* + 27R. Note that the expansion along an infinite line
enable us to realize the Skyrme fiéldby the holonomy of the gauge field:

UX) = —-Pexp fwd%‘ Ag(X, ><4)]. (3.26)

Although itis possible to comput&™, let us focus on the leading approximatiae, we neglect all the vector meson modes and
focus only on the Skyrme field (x'). We call this the Sutdffe’s truncation. Then, in the gaude = 0, we have the following
decomposition of the gauge field strength:

Fia = UgU 0. (X) =R ‘”\‘é’: ,
Fij = [RL Ry, (XY (. (X) - 1), (3.27)

whereR, = Ug;U 1 is interpreted as the right current.

Now it is easy to show that the Sutté’s truncation of the Yang-Mills action (3.19) gives the energy functional for the static
Skyrme field. Plugging the decomposition (3.27) into the quadratic Yang-Mills action (3.19) and performing the integration o
x4, then we find

- (@ (“STRR] - 2THR.R T
5= ¢°x (- 2TIRR] - 22TMR, RI?), (3.28)

where the numerical factors are calculatedtas -2~ ~ 0.141,¢, = 2 [ dXy2(y, — 1)2 ~ 0.198. These numerical factors
4 oo +

can be set t@; = ¢, = 1 by the rescalings of the lengih — +/c,/c;x and the overall factor of the actid® — ‘/c—lTCZS. We
therefore consider the natural unit= c, = 1 and sek = 1,¢g = 1 for simplicity. After the rescaling, the action (3.28) becomes
the energy functional for the static Skyrme field:

We note that the energy functional (3.4) breaks the scale invariance presented in the Yang-Mills action. A physical origil
this violation comes from the Sutfiié’s truncation (3.27) where only the zero-mode (Skyrme field) is taken into account. Onc
we include all the vector meson modég, the scale invariance is expected to be recovered.

3.3 Atiyah-Manton construction

Although the analytic solutions of Skyrmions have not been found so far, there are two methods of constructing approxir
charge B Skyrmions with using ansatz, known as a product ansatz [8, 55, 56] and a rational map ansatz [46]. However
of these approximantions have disadvantages. The problem with the product ansatz is that it is only a good descriptic
each unit charge Skyrmion well separated. The rational map andézssitom the opposite deficiency, in that it provides a
good approximation to Skyrmions of minimal energy, and also to some low energy saddle point solutions, but does not cor
any degrees of freedom without the center position to allow the individual Skyrmions to separate. In this section we desc
another method known as an Atiyah-Manton construction. The Atiyah-Manton construction produce good approximation
the minimal energy solutions which including well separated Skyrmions with arbitrary positions and orientation. This appro:
is based on existence of Yang-Mills instantons, thus if there are not the analytic solutions of instantons we can not employ
approach.
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30
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Figure 3.2: The energy profile for the Atiyah-Manton solution (3.32) as the function of the instanton size

Following Atiyah and Manton [10], we calculate the holonomy for the instanton solution. For (1.20), the 't Hooft one-
instanton is gien by

_Lomfis 20 (3.29)
=g %) '

where||X||? = (¥ — a)(x, —a,) anda, & are the size and the position moduli of the solution. For simplify, we¥set0. The

symboln,(jv) is the 't Hooft symbol which is defined by (1.11). To this end, it is convenient to rewrite the solution (3.29) as

i 1 1 1 .
Aulx, x') = 2 (/12 + 12 4+ (x4)2 Cr2y (x4)2) X n’(”)' (3.30)

Then one finds

1 iof

= - . 3.31
Aa (/12+r2+(x4)2 r2+(x4)2)xe' (3.31)

Using this representation, we calculate the following holonomy for the one-instanton sa\tion

) 0 . r .
Ux) = —Pexpf dx Ay(X, x4 = exp[ﬂ(l— —) x'e*] . (3.32)
—co iz 2)
The result is the hedgehog form for the Skyrme field with a profile function given by
r
f(r) =7r(1— —) (3.33)
Vr2 + 22

Instantons are scale invariant, so the (instanton size) parame&terbitrary and we employ to the value which minimize the
energy resulting Skyrme field. Hence we have to seek the minifa(it)y E(1) denote the energy functional that the profile
function of the Atiyah-Manton solution (3.33) plugging into (3.9). The plotEgn) is Fig 3.2. We find the minimum point of
E(1) ata = 1.45227.

For this value ofi, we now compare the profile functions of the Atiyah-Manton and the solution by numerical analysis
(see Fig 3.3(a)). The plot for the energy density is also compared in Fig 3.3. We find that they agree with good accuracy.
This result can be confirmed by evaluating the total energy (see Table 3.1). Therefore the Atiayh-Manton solutions is the good
approximations to the numerical solutions.

In higher charges, such that when we start from the more general instantons, the Atiyah-Manton construction also give the
good approximate solutions of Skyrmions, but the calculation of the holonomy can not be perfomed analytically, it can be done
numerically only. For further details of the higher charges case see [57, 58, 59].
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(a) The profile functions plot. (b) The energy densities plot.

Figure 3.3: The numerical versus the Atiyah-Manton solutions.

Solution || Numerical sol.| Atiyah-Manton | BPS bound
Energy || 1.2314x 127% | 1.2432x 12n° 1272

Table 3.1: The total energy for the numerical, the Atiyah-Manton solutions and the BPS bound in the Skyrme model (3.4






Chapter 4

Skyrme models in eight dimensions and more
higher dimensions

In this chapter we introduce a Skyrme model in eight dimensions following the formalism developed bffesfi@]i Further-
more we discuss the spherically symmetric Skyrmion and the Atiyah-Manton construction in eight dimensions. The discus
of this chapter is based on [60].

The instantons in four dimensions satisfy the self-duality equdtioa =4,F. HereF is the field strength 2-form of the
gauge field andq is the Hodge dual operator thdimensions. A natural higher-dimensional generalization of instantons is
a solution to the self-duality equationsdn= 4n dimensions=(n) = =4,F(n) whereF(n) is then wedge products of. The
n = 1 case corresponds to the instantons in four-dimensions while th2 cases are their generalization. The first non-trivial
example is then = 2 case, namely, the self-dual instantons in eight dimensions. This was studied so far from various conte
[30, 31]. Futhermore the higher dimensional instantons were discussed in chapter 2. On the other hand, it is possible to cor
higher-dimensional generalizations of Skyrmions [61].

In this chapter we study the relation between instantons and Skyrmions in higher dimensions. In particular, we focus or
eight-dimensional self-dual instantons that satisfix F = «gF A F. The self-duality relation is obtained by the Bogomol'nyi
completion of the generalized Yang-Mills action in eight dimensions. We will derive the energy functional for the static Skyrr
field from the generalized Yang-Mills action by the reduction procedure developed byfiguisll]l. The Derrick’s theorem
indicates that the model admits static soliton solutions which we call the eight-dimensional Skyrmions. We will find the r
merical solution of the above mentioned Skyrmion. We will then calculate a field configuration through the Atiyah-Mant
construction applied to the eight-dimensional instanton and find that this gives a good approximation to the numerical solt
of the Skyrmion. These results strongly suggest that the inst@kgmion correspondence holds even mdimensions and
this relation is an universal property.

The organaization of this chapter as follows. Section 4.1 is about an eight-dimensional Skyrme model. In this section, we
to the Skyrme model in eight dimensions from the eight-dimensional generalized Yang-Mills model with using tHeeSutcli
truncation method. Section 4.2 is discussion of the eight-dimensional single Skyrmions from leading by two methods. F
method is that we directly solve an equation of motion with a spherically symmetric ansatz numerically. The other metho
construcion that single Skyrmion from a holonomy of the eight-dimensional 't Hooft 1-instanton, namely a higher-dimensio
Atiyah-Manton construction. We will show that the Atiyah-Manton construcion in higher dimensions works well also. W
introduce a seven-dimensional hedgehog ansatz as spherically symmetric ansatz. Section 4.3 is discostietbasidnal
Skyrme model from thertdimensional generalized Yang-Mills model. In this section, we will show that théifhensional
Skyrme model satisfy the Derrick’s theorem, thus it can be expected that the existence of solitonic solutions, namely hig
dimensional Skyrmions, in this model. Futhermore we lead an explicit action(energy functional) of twelve-dimensional Skyr
model from the generalized Yang-Mills model in twelve dimensions. In section 4,4, we show the some calculations in more de
Specifically as follows. In subsection 4.4.1, we show the Bogomol’'nyi completion of the eight-dimensional (static) Skyrt
model, Moreover we lead the normalization constant. Subsection 4.4.2 is about an higher-dimensional sperically symm
ansatz, namelly an hegehog ansatz in dimensions higher than theree. We introduce the higher dimensional Hedgehog an:
using the 4n-dimensional ASD basis, and lead the eight-dimensional Skyrme model with this hegehog ansatz. We find tha
hegehog ansatz works well in section 4.2. Section 4.5 is about the numerical calculation to calculate the single Skyrmion in
dimensions.

61
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4.1 Eight-dimensional Skyrme model

Now we generalize the procedure in the previous chapter to eight dimensions. In eight dimensions, the natural action whose BPS
equation is the self-duality equatiénA F = xg(F A F) is that of the generalized Yang-Mills action. The action is

S = — fTr[*g(F AF) A (F AF)]
Kg
1\ 4 « 8 4y = poy2 v epor e 12
- 21) 2% dOXTr [(FFP7)2 — AFP FPT R F 4+ (FF)?]. (4.1)
Herew,v,... =1,...,8 and the component of the gauge field strength Z-ﬁrm%Fde/\dxv isFu = 0,A —8,A+[ALA]

A constantr has mass dimension] = —4 andg is the gauge coupling constant whose mass dimensie.in the following,

we seta/g? = 96 andk = 1 for simplicity. The gauge field, is in the adjoint representation of a Lie algebra associated with

the gauge groufs. We consider a gauge gro@which admits a non-trivial homotopy,(G) = Z. The analysis is completely
parallel to the four-dimensional case. We decompose the directiors(x, x8), (i = 1,...,7) and expand the gauge field in
terms of the Hermite functiopy(x8). The Sutclife’s truncation provides the static Skyrme field in eight dimensions through the
relations (3.27). Plugging the expansion (3.27) into the generalized Yang-Mills action (4.1) and performing the integration over
the x8-direction, we obtain the energy functional for the static Skyrme field. Let us show this calculation as follows. The first
termin (4.1) becomes

Tr|(FF) | = Tr|(FUF) + 4FTF PR + 4(F°Fis) | (4.2a)
The second term in (4.1) becomes
Tr[F#Fey?] = T [(F” F4Y 4 a(FiFR)’ o 4(Fi8|=18)2] . (4.2b)
The third term in (4.1) becomes
Tr [F R F oy | = Tr[F” FNEWF) + FIFFF g — 2F FNFI8F g + FUFigFy F*€ + (F‘BFJS)2 + (Fi8Fi8)2] . (4.20)
Hence
Tr [(F“VFW)Z + (FFY - a(Foper FHPFW)]
- Tr[(F” Fi) + (FIFY) - 4Fi FRRy Fy
+ 4FF FROF g + 4(F |=‘<8)2 ~ 4FFRFLF g + 8F i FNFI8F g — 4F FigFy jF*|. (4.3)
In eight dimensions, the decomposition of the gauge field strength with fBeitctruncation (3.27) becomes

x8
Fis(x, X%) = R(X) l//\/(lz(nl/)ﬁf’

Fij (%, %) = [R(X), R 01+ 0€) 0+ (%) - 1). (4.4b)

Therefore we obtaitn the (static) Skyrme model in eight dimension:

(4.4a)

Eagme= | d'xTrlez (IR.RIIR.R]) + o2 ([R.RIReRI)
— 46[R. R|][Ra RI[R. RA[R;. R]
+4cy (IR, R)]) R + 4c: ([R, RIRY)’ - 4ci[R. RIRIR, RAR,
+8c1[R, Ril[Re. RIR|R« - 41[R, RIR[R, RiIR(]- (4.5)

HereR, = Ug;U~1 is the right current and the Skyrme field is defined by the holonomy

U(x) = —p eprmde Ag(X, XS)]. (4.6)
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Therefore, the Skyrme field is a m&p: R’ — G whereG is a group manifold. The numerical constantsc, in (4.5) are
calculated to be

Ci = f " %wng(m -1)2~0.0094Q ;= f IPT: v (v, — 1)* ~ 0.00308 4.7
—o0 T —oo

As in the case of the four-dimensional Skyrme model, these numerical factors are scaled away by the replatements
VC2/CiX, Eskyrme — \/c_llTZESkyfme We therefore set; = ¢, = 1. The generalized Yang-Mills action (4.1) has the scale
invariance while the energy functional (4.5) does not. Again, this is due the fBitctruncation where only the zero-mode is
considered and the vector mesons are neglected.

The eight-dimensional Skyrme model (4.5) has similar properties with the four-dimensional ones. For example, the en

functional (4.5) is invariant under the following global transformation
U—- OWUOR, O,0reG. (4.8)

This is a generalization of the chiral symmetry in four dimensions. One also finds that the energy functional (4.5) consist
the terms with 6th and 8th derivatives. This is compared with the 2nd and 4th derivative terms in the four-dimensional Sky
model. The Derrick’s theorem applied to the energy (4.5) indicates that there is a stable solitonic solution to this model. We
this the eight-dimensional Skyrmions. The Bogomol'nyi completion of the energy (4.5) is given by

2

1 16
Eskyrme = 4fd7X Tf[ ( v gsijklmnoRi RiRc = VAIR|RuRaRo | F 4€ijimnoRi Ri RR RnRaRo | > N_C|B|’ (4.9)
whereNc = —1/96007* is the normalization constant of the following topological charge:

5=Ne [dxTr[opmRRRRRR|R. (4.10)

Heresijumno i the totally antisymmetric tensor. The topological charge (4.10) is the natural generalization of the Baryon num
B= 2Tln2 fd?’x Trleik R RjR(] in the four-dimensional Skyrme model. This calculation in more detail see subsection 4.4.1.

4.2 Eight-dimensional Skyrmions from instantons

In this section, we examine a field configuration that extremizes the energy functional (4.5), namely, the Skyrmion in ei
dimensions. Assuming the hedgehog ansatz for the SkyrmeUieJl we first derive the equation of motion from (4.5).
We will find a solution to the equation by the numerical analysis. We then construct a field configuration from the eig
dimensional instantons through the Atiyah-Manton prescription. We compare the two solutions and verify whether the Atiy
Manton approximation works even in eight dimensions.

4.2.1 Skyrmions from numerical analysis

Following the standard scheme for a spherically symmetric solution to the four-dimensional Skyrme model, we consider
following hedgehog ansatz:

U(x) = exp(f(nKe), (4.11)

wherex' = X, r2 = Xx' and f(r) is a real function. The basi, € is the higher dimensional analogue of the pure imaginary
guaternions in four dimensions. Note that we do not employ the octonions as a higher dimensional generalisation of the gL
nions. It is well known that the octonions are never represented by matrices and the algebra based on them loses the assoc
[62]. The natural candidate for the basis in eight dimensions is based on ffeedCilgebra. This is given by

& =0ele+0ul, € =0glg+ [V, (u=1....81i=1....7) (4.12)

wherel'™ are 8x 8 matrices that satisfy the relatio(ﬁi),r(j*)} = ~26i;1. The matriced(") are defined by ™ = 1(1 + w)I.
We choose the matricd$™ such that they satisfy the relatiof’ = —I'"). Herer’; are given by the matrix representation of the
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seven-dimensional complex @brd algebrd’; € C¢7(C) andw = (-1)['; - - - I'7 is a chirality matrix. The basis is normalized as
Tr[e,,ei] = 8¢, and satisfies the following relations

.6 +e€ =€ee +ee, = 20,1,

€.6 + €6, = 20,86, + 20,86, — 20,18,

e'el + efel = 26,8€] + 26,86, — 20, 15. (4.13)
Note that we havef = —g in our construction. Therefore the hedgehog field configuration (4.11) satisflés= 1g and it

belongs tdJ(8). The details of the Ofiord algebra, including the explicit matrix representations of the M are found in
section 2.5.

We now derive the equation of motion for the profile functiidn) (The following calculations in more detail see subsection
4.4.2). Using the algebra of the basis (4.13), we find that the hedgehog ansatz is expanded as

U(X) = cosflg +sinfRe’. (4.14)
This expression allows us to write down the right-current field:
R =rtsir? f{1g — (-r~*sinf cosf + d, f)%&" —r*sinf cosfe +rsir fe's'. (4.15)

HereX = Xg, ' = >“<‘ef. It is straightforward to calculate each term in (4.5) by using the above expression and the algebra
associated with the basis (4.13). The energy functional becomes,

ESkyrmezf drf dQe,(S(I’)
0 S6

= 2457&3f dr (3r2sin4 f(0, )2 + 4sirP £(40, f)2 + 1)+ 12
0

sir? f), (4.16)

r2
where the overall factor comes from the volume factor of the radial direction and algebras cor&akeiin@hen, we derive the
equation of motion foff (r) as

sir? f(3r2 + 16 sirf f)92f + 6r sir? o, f

+ 3sin 2f

i
(2 + 8sir? £)(8; )% — 2sirf f — 85'?2 f ] -0, (4.17)

The boundary condition for the profile functidir) is
f(0) = =, f(o0) = 0. (4.18)

Compared with the equation in four dimensions, the equation (4.17) looks highly non-linear. Therefore it is not obvious
whether the equation (4.17) has appropriate solutions that are consistent with the boundary condition (4.18) or not. In order to
clarify the existence of the solution to the equation (4.17), we first perform the Taylor expansion of the profile function at the
origin: f(or) = 225 fi (6r)' = fo+ f16r + f2(6r)% +. .., namely we perform analyzation that similar to four dimensional case. We
then write down the equations for the @eients f; and look for f; order by order indr)'. For the boundary condition (4.18),
we find that the asymptotic behavior of the solution around the origin is

(3+8f2) 17 . 2f(387+16f2(192+ 7892 + 1616f/))
9(3+16f7) 1485(3 + 16f2)’

Here f; can be chosen as a shooting parameter in the numerical analysis. From this observation, we conclude that we can
numerically calculate a solution to the equation (4.17) by appropriate methods of second ordiiezeptitil equations with
boundary conditions. Moreover we find that the seven-dimensional Hedgehog ansatz (4.11) is proper spherically symmetric
ansatz. The numerical result is found in Fig. 4.1 where we have employed the functional Newton-Raphson method. The
behaviour of the profile function and the energy functional is quite similar to those in the four-dimensional Skyrmion (see Fig.
3.1). A specific method for this numerical analysis in more detail see below section 4.5.

The Skyrme field is a maR’ — U(8). However, the boundary condititi(r) — 1g (r — o) implies that the base manifold
is topologicallyS”. Therefore the solutions are characterized by the topological charge associated with the homotopy group
m7(U(8)) = Z. Indeed, the topological charge for the hedgehog ansatz (4.11) and the boundary condition (4.18) is evaluated to be

B = 9600:3Ng(f(c0) — f(0)) = 1. (4.20)

This is the single Skyrmion in eight dimensions.

f(or) = m+ fror —

(6r)° +O((or)’). (4.19)
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25 3.0

(a) The profile for the 8d Skyrmion. (b) The energy density plot for the 8d Skyrmion.

Figure 4.1: The numerical profile fdi(r) and the plot for the energy densijr).

4.2.2 Atiyah-Manton solution from instantons

We next make contact with the Skyrmion from the eight-dimensional instantons. The Bogomol’nyi completion of the generali:
Yang-Mills action (4.1) is

Sgvm = zkingTr[(FAF¢*8(F/\F))2¢2F/\FAF/\F]

07
>+— [TFAFAFAF]L (4.21)

z*
Here we have defined

(FAF +%gF AF)2 = (F AF +#gF AF) A #g(F AF +%gF AF). (4.22)

The action is bounded from below by the fourth Chern nunkberfTr[F A F A F A F] which defines the topological charge
associated with instantons. The theory defined by the action (4.21) has scale invariance. The Derrick’s theorem implies th:
theory admits static solitons, namely, instantons. The Bogomol’'nyi bound is saturated when the (anti-)self-duality equation

FAF=x#FAF, (4.23)

is satisfied. This is a natural generalization of the (anti-)self-duality equBtierx =4 F in four dimensions. In the following we
choose the plus sign in (4.23). Solutions to the equation (4.23) is known as the self-dual instantons in eight dimensions.
are characterized by the homotopy graufG) = Z whereG is a gauge group. The 't Hooft type one-instanton solution is given
by

= Lon(1+ L =6 (4.24)

A"_4V I%12) " '

where||X||> = (¥ — a‘)(x, —a,) anda, & are the size and the position moduli of the solution. For simplify, we¥set0. The
matrix

) =e€ -6 (4.25)

is the ASD tensor which is the eight-dimensional analogue of the 't Hooft instanton in four dimensions (see previous chapte
Similar as the four-dimensional case, we calculate the holonomy for the instanton solution (4.24). To this end, itis conver
to rewrite the solution (4.24) as

A (X, x8) = % ! L )xvz(). (4.26)

212482 124 (x8)2 “V
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Figure 4.2: The energy profile for the Atiyah-Manton solution (4.28) as the function of the instantan size
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3.0

§ — numerical sol.
25F

\ Atiyah-Manton
2.0
1.5F
1.0}

0.5"

OO: L L - - ! L L L L L L L L I 1 h T ¥ L I r

Figure 4.3: The profile functions for the numerical and the Atiyah-Manton solutions.

Then one finds

1 iof
= - . 4.27
Using this representation, we calculate the following holonomy for the one-instanton salgtion
. 0 . r .
U(x) = —Pexpf dx8 Ag(X', x8) = exp[n(l— —) ﬁ'eT] . (4.28)
—00 Vr2 4+ 22 !

The result is the standard hedgehog form for the Skyrme field (4.11). This is why we have employed tkfp ida@lsl1).
Plugging the Atiyah-Manton solution (4.28) into the (static) Skyrme action with the hedgehog ansatz (4.16) results in the static
energyE(1) for the solution. The plot foE(1) is found in Fig. 4.2. As anticipated, the energy depends on the size of the
instantond. This is because the Suti#’s truncation breaks the scale invariance in the generalized Yang-Mills model. The size
A now lost its status of modulus. The true solution corresponds to the extremigm)ofWe find this happens at= 3.29095.

For this value of1, we now compare the profile functions of the Atiyah-Manton with the numerical solutions. The result
is found in Fig 4.3. We find that they agrees with high accuracy. The plot for the energy density is also compared in Fig 4.4.
Again, we find a good agreement between them. This result can be confirmed by evaluating the total energy (see Table 4.1). We
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Figure 4.4: The profile functions for the energy density. The numerical versus the Atiyah-Manton solutions.

Solution Numerical Atiyah-Manton | BPS bound
Energy || 1.51239x 16/N. | 1.51521x 16/N. 16/N;

Table 4.1: The total energy for the numerical, the Atiyah-Manton solutions and the BPS bound in this model (4.9).

therefore conclude that the Atiyah-Manton construction of Skyrmions from instantons works well even in eight dimensions.
note that the eight-dimensional Skyrmion is a non-BPS solution which is same as the four-dimensional one.

4.3 The higher dimensional generalization

In this section we perform an analysis on the Séb truncation method inmdimensions. It is worthwhile first to mention
about then = 3, namely, the twelve-dimensional case. In twelve dimensions, the self-duality equation bécontes F =
+ %120 F A F A F. Itis an easy exercise to show that the one-instanton solution to this equation is given by (4.24) where
SO(8) generatoifjv) is replaced by that of SO(12). We can construct the Atiyah-Manton solution by calculating the holonon
associated with the instanton solution. We can also find the Skyrme model in twelve dimensions and its Skyrmion solution a
the lines of the eight-dimensional case. The discussion is parallel to that in eight dimensions presented in previous discus
However, the explicit calculation of the Sutéé’s truncation in twelve dimensions results in the energy functional for the Skyrme
model with diverse (abou®(10?)) terms. Analyzing all the terms is very hard, thus we first proceed to the general discussion
the following.

Now we move to the discussion im4limensions. Themdimensional generalization of the generalized Yang-Mills action
4.1)is

Svm = LmTr[F(n) A g F(N)], (4.29)

whereF(n) is thenth wedge products of the gauge field strength 2-foffn) = F A --- A F. The gauge field takes value in
the adjoint representation of a gauge gr@ipWe assume that this gauge group has non-trivial homotgpy(G) = Z. It is
straightforward to perform the Bogomol’'nyi completion of the action:

Sym = % fR TH(F(D) # =anF (M) £ 2F(2)] > = fR _THF(2n)]. (4.30)

The BPS equation becomes
F(n) = + %4 F(N). (4.31)

This is the (anti-)self-duality equation im4limensions. The one-instanton solution to this equation is explicitly wrote down
by the ADHM construction of instantons im4limensions [26] which is therddimensional generalization of [25] in eight
dimensions. Again, the solutions are given as the form in (4.24) where the SO(8) generator is replaced by thosg.of SO(4
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Next we perform the Sutdlie’s truncation. The index structure of the Yang-Mills Lagrangian is
F(n) A #4nF(n)

1 (1"
= _(Zn)! (E) 8/11-"#2nV1--~vznd’l"'”znpl"'pz” Frv2. .. FYa-1Van Fplpz e sznflpan‘mX, (4'32)

where the overall factor comes from the normalization of the 2-fBrm %F#de A dx’ and the definition of the Hodge dual
operation. The procedure of the reduction is parallel to the previous sections. We can reduce the gauge field along, say, the
x*'-direction. Then, the gauge field becomes

X4n
Fiﬁ =R lﬁ:}(_zz’i)’ Fii =[R, Rj]W+(X4n)(W+(X4n) -1),
(,j,...=1,...4n=1, # = 4n). (4.33)

HereR = Ua;UT is the right current field constructed from the Skyrme figlgk'). Then, the energy functional for the static
field U(X') in 4n dimensions has the following structure

ESkyrme: E4n(x) + E4n_2(X), (4-34)

where E,, stands for terms that contain-th derivatives. The energy (4.34) is compared with that in the eight-dimensional
Skyrme model. Again, the Derrick’s theorem implies that there is a static soliton solution that extremizes the energy (4.34). This
is nothing but the Skyrmion inmldimensions. Finding the explicit solutions need the numerical analysis in each dimension. We
can also calculate the holonomy for the 1-instanton solutiomidichensions and derive the static enekgyl). Although we do

not repeat the same calculations, the result of the original Atiyah-Manton construction in four dimensions and our result in eight
dimensions strongly suggest that this instayémrmion correspondence does hold md#imensions.

4.3.1 twelve-dimensional Skyrme model

In this subsection, we will lead a twelve-dimensional Skyrme action. For (4.32),

6
1(1
(FAFAF)Ax(FAFAF) =& (5) L e i CIe] SiCie] SN S S o 'd (4.35)
thus
1 1 ° 1.--H6P1---P6 V1V2 [£V3V4 £ V5Ve
a E ‘9#1~~H6V1-~V6‘9ﬂ Tr [F F F prz Fpap4 Fpspe]
1 2 2
- éTr[ZFMNFMN (FOPFR)” + FMNEy FOPFORE orF op + (FMNFOPFOR)
+ FMNFOPFQRFMNFQRFOP + FMNFOPFQRFOPFMNFQR
— 8FMNEuNFOPFRFooF pr — BFMNFOPEQRE , FooFpr — 8FMNFOPEQRE opF voF Nk
— 4FMNEOPEQRE . o FopFnr — 4FMNFOPERRE Y o F orFnp — 4FMNFOPERRE o FrFop
+ 8FMNFOPEQRE . s FnoFpr — 8FMNFOPEQRE o FpoF Nk + 8FMNFOPERF oo F upF ik
— 8FMNEOPERRE G FyrFnp + 8FMNFOPFORE o ForFp — 8F MNFOPFRE o FoF e, (4.36)
whereM,N,O,P,Q,R = 1,...12. Let us now decompose the directiots = (X', x*) (i, j,k.--- = 1,2,...,11 and #= 12) for

all terms in (4.36).
The first term becomes

2 . . .
Tr [FMNFMN (FOPFQR) ] = TI’[FIl Fij F*F™F Fron + 2F T (Flen#Flen# + Fk#anFk#an) + 4FY Fij FYF ™ P F o

+ 2P F P M F g iy + AR Fig (FRF™ g P + FF PP mn) + 8F 7 F i P ™ g F g .
(4.373)
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The second term becomes

Tr [FMNFun FOPFORF orFop
= Tr[FUF FRF™F P + 2F T Fj FRYF™F P + 4F T Fy FRUE™F Py
+ AFPF PN EE P + 8F Yy FYEE P + 8F R PR E P (4.37b)

The third therm becomes

Tr (FMNFOPFRR)” = Tr [ F FME™ R Py F oy + 6F T FRE™ ) Fig Frg + 128 FF ™ F PP + 8F ™y Py P
(4.37c)

The fourth term becomes

Tr [FMNFOPRORFuNF orFop| = Tr| I FXF™ ) FrngFia + 2F *FigF ™ FigFmaFi + 4F FYF™F F g
+ AR F R R FoF i + BF YRR F™E L F P + 8F P FYFELF Fe|. (4.370)

The fifth term becomes

Tr [FMNFOPFRE o unFor| = Tr[FIFYF™ g Fij Fn + 2F T FYF™ R Fy P + 4F T FF™FG By Py
+ AR EREME G F L F g + 8F F Y F Ry P + BF R F™ R yFow . (4.37€)

The sixth term becomes

Tr [FMNFunFOPFORFogFeR|
= T FI R PR R + FY R FYE™ (FinPF s — FieFim)
— FUF FF™ (FymF g — FreeFin) + FUFi F¥F™ (FiF s + FroFi)
+ 2F*FFNE™E Fi + 2F#FFNE™ (FyFis — FirgFim)
— 2F R F ™ (FyFrs — FrnsFin) + 2F *FisFF™ (FieF g + FrsFie) | (4.37f)

The seventh term becomes

Tr [FMNFOPFRREy  FogFer|
= Tr[FFME™ R FinFin + FFYF™ ) (FinFis — FiFim)
~ FIFMEME (FymF g — FruFin) + FUFF™Fy (FigF o + FrosFi)
+ 2F*FMEMEL L Fin + 2F N E™E L (FiunFis — FireFim)
— 2FPFMEME L, (FunF s — FrsFin) + 2F PR ™ Fig (FioFe + FrsFi) | (4.379)
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The eighth term becomes

Tr [FMNFOPFRF opF R nR|
= T FIFYF™ R FimF j + FFE™Fy (FimF s — FisFjm)
+ 2P FYE M FinF o + 2F Y FF™ g (FimF ji — FisF )
— FPFME™Ry (FimFs — FrsFin) + FPFME™Fg (FigF s + FnsFis)
— 2F M E M (FimFrs — FroseFin) + 2F PP F™ iy (FiFos + FrosFis) |- (4.37h)

The ninth term becomes

Tr [FMNFOPFRREy oF opFig|
= T FIFME™F i FiF i + R E™ (FinFiF s — FisFiaF m)
+ 2F T FREME  F g+ 2F T FE™ (B FiF s — FigFiF i)
— F¥FME™ (FinFiuFrg — FrsFaFin) + FPFF™ (FigFi P + FroFioFig)
— 2F RN (Fi P s — FinsFisFin) + 2F T FF™ (FiFiF g + FrosFiesFis) | (4.37i)

The tenth term becomes

Tr [FMNFOPRORE o F orF e
= Tr[FUFYF ™y FonnF ) + 2F T FRF™ Ry FrgF
+ FU R E™ (Fy FonoF g — FisFmnF ) + 2F F¥F™ (Fi PP g — FisFrosF )
— FYFME™ (FiFmnFis — FioeFmnFit) — 2F *FHE™ (FicF P — FiesFmseFil)
+ PR ™ (PP + FiesFmnFi) + 2F *F¥F™ (Fy PP + FiosFosFis) | (4.37))

The eleventh term becomes

Tr [FMNFOPFRREy oF rFop|
= T FIFME™ R F o Fig + FIFRE™ (FinFjs — FisF jm) Fia
+ 2F I FEME P + 2F T FE™ (B F s — FigF ) Fioe
— FYFNE™ (FimFos — FinsFin) Fia + F PR E™ (FigF g + FroFis) Fig
— 2F R R (FyF s — FroFin) Fios + 2F  FF™ (FiyFrg + FrogFis) Fics |- (4.37k)

The twelfth term becomes

Tr [FMNFOPRRFyoFngFer]
= Tr[FIFF™ R F jmFin + FIFF™Fy (FjmFrs = FjeFim)
— FUFME™ (Fy F P + FisF mFin) + FFF™ (FiF jF s — FisF it + FiseF jeFim)
— F*FXF™ (FicFmFin — FiiFimFin) — F*FXF™ (FicFmsFis — FisFimFis + FiiFisFim)
+ P R (B PP + FisFrseFin — FioeFimFe) + FPFF™ (FiyFmgFies + FsFisFims) . (4.371)
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The thirteenth term becomes

Tr [FMNFOPFREy 0 FpoF R
= T FIFMF™ Ry FinF o + F M E™ i (FinF js — FiaeF )
— FUFYE™(Fy FrwF jn + FisFiF jn) = FOFYF™ (FiFrF js + FisFioF js — FisFiaF jm)
~ F*FMF™ (FiFimF s — FieFimFin) + F*FYF™ (FicFisFms + FiesFimFis — FiesF19Fim)
+ FPE R (Fy F g + FissFrnFrs — FiesFmFin) — FPFF™ (FiuFiF g + FioiFosFis) |

The fourteenth term becomes
Tr [FMNFOPFORF o oF mpFg|
= Tr{ M E™ R o F i + FI R E™ (FinFi F i — FieFi Fjm)

+ FUFSE™ (PP + FrgFi) Fin + FUFF™ (FinFiaF js — FrsFisF im + FrsFicF )
~ FYFME™F i (Fi Frs = FisFin) + FYFYF™ (FieFi Frow + FinFisFis = FioeFisFim)

— YRR (i + FoseFi Pt — FroeFieFin) + FP R E™ (FiFiF g + FrogFicsFis) .

The fifteenth term becomes

Tr [FMNFOPFORF o oF mrF e
= Tr[FIFYF™FnFinFyy + FYFYE™ (FinFis — FieFim) F
+ FUFRE™ (FyFinF js + FrsFinF i) + FFF™ (FinFisF s — FisFimF s + FrosFisF )
— FPFXE™ Py (FinFis — FruFi) = FYFFE™ (FinFisFis — FieFimFis + FieFouFi)

~ FYFF™ (FoyFin Fios = FianF i — FrosFreFi) = F*FYF™ (FrngFisFics + FiosFmsFi) |

The sixteenth term becomes

Tr [FMNFOPFOREy oF orF e
= Tr[FIFYF™FimFioF ) + FFYE™ (Fin P — FisFian) F
+ FUEREME (FinF g + FrsF i) + FUFF™ (FimFiF g — FisFinF s — FisFreF i)
~ F*FXE™ (FinFinFis — FrwFinFi) = F*FXE™ (FimFiarFis — FisFiFis — FrwFioFa)

~ PR ™ (FimFrsFios — FrsFoFis — FrosFrFi) + FPFF™ (FiFrneFies + FrvsFiosFis) |-

The seventeenth term becomes

Tr [FMNFOPFRREy oF noFer|
= Tt FIFME™F 0 F o Fin + FFRE™ (FinF i Fis — FisF jFim)
— FURMEM R, (FFos + FjaFin) + FTFYF™ (FiF P — FimF j4F i + FisF jsFicm)
— FFF™ (FimFi — FrFi) Fin — FFF™ (FimFieFis — FisFiosFim — FrsFicFis)
+ FHFYE™ (FimFicsFrs — FrosFic s — FosFisFi) — FPFF™ (Fig PPy + FivFisFis)|
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(4.37m)

(4.37n)

(4.370)

(4.37p)

(4.37q)
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We calculate the summation for the Whple terms, and then can check that the sixth-order terms (for IREBREEF ™ F i F )
and the eighth-order terms (for instarfeéFFX F™FF ) become zero. Here thetorder term” means the term that contain
m's roman indeces. Next we consider the tenth-order terms (for instEHcFej,Fk'F”#FHFn#), but this calculation is so long.

Hence we give the conclusion of the calculation in the following lists.

Types | Codficients | Using (3.27) (where* — x*) and integrate the-direction.

| 4=4 FUFi FFrF P = ci[R, Ri]* ([Re. RIRm)”,
I 4=4 FUF F¥FMEFmn = € R, RiJ2 (RdRm, Ril)?,
i 4=4 F#FiyFXF™FigFinn = ¢1RE ([Re, RI[Rm, Ral)?,
\Y 2=2 FUFij FYFMEmaFie = Ca[R, Ri]*Rd R, Rol*Re,
\Y; 4=4 FIF; FMF™F g = ¢i[R, Ri]?[Re, RIRZ[R, R,
Vi 6=6 FiIFMF™F, FyF = 1 (R, RI[Ro RIRm)
Vil 2+2=4 | F*ENEMELEL G = ¢R[Re R][Rn RIR[Rm Ri][Re. R].
VIII 4+4=8 FUFME™E) FrFi = ci[R, Ri][Re. RIRm[R., RIRn[Re. R
IX -8=-8 FIIF FYF™FimFis = c1[R, RiJ’[Re, RIRm[Re, Rl R,
X 8=8 FUFi} FYF™FigFim = Ci[R, RiJ’[Re. RIRnRd(R, R,
X1 8=8 FUF; FF™Fy g = C1[R, RjJ”Re[Rm, R][Re. RulRn,
Xl -8=-8 FIF FYFME P = G R, Ri1?R R, Ra] Rl Re. Ra].
X1l 16=16 F#FisF“ F™FimFin = CiR[Re, RI[Rm, Ral[Re, Rml[ R, Rol,
XV -8=-8 F.I.JFlem#FiijmFl# = ¢1[R, Rj][Re, RIRu[R, Ri[Re. R R,
XV 8=28 FIFMF™F FigFim = c1[R, Ri[Re, RIRm[R, RJR(R, Rl
XVI 8=8 FUFYFMEj FimFrs = C1[Ri, RiJR(Rm. Ral[R.. Rj][Rc, Ru] Rn.
XVII -8=-8 F! FY¥FME FrgFin = C1[R, RiJR(Rm, Ral[R:, RiJRm[R, Rul,
XVII | -16=-16 | F*FYF™Fy,FmFin = iR [Re RI[Rm Ri]R[Re. Rl[R, Rul,
XIX -8=-8 FfJ_FkIF'T#FMFiij#: c1[R, Ril[Rc, R]Rn[R«, RI[R:, RmlR;,
XX 8=8 FIFKME™E FisFjm = ¢1[R;, Ri][Rc, R]Rm[Rx, RIR[R;, Rul,
XXI -16=-16 | FIF¥*F™FuFinFjn = C1[R., RIR(Rm RiJR(R. Rul[R}. Rl
XXII 8=8 F#FXE™FyFimFrs = C1R[Re, R][Rm, Ral[Re, RI[R, Rl R,
XX -8=- FYFMEMF FryFin = CiR[Re, RI[Rm, Ral[Re, RIRn[R, Ral,
XXIV -4=-4 FIFMFE™E FuFjs = ca[R. Ri][Re RIRM[R, Rul[Re. RIR;,
XXV 4+4=8 FIFMF™FFiFim = ci[R. Ri][Re. RIRnR[Re. RI[R). Ruil.
XXVI -8=-8 | FIFYF™FnFiuFjn = C1[R;, RiJR(Rm, Ril[R, Rl RdR;, Rul,
XXVII —4=-4 | FPFMF™FuFoFin = ciR[Rk, R][Rm, Ra]Rm[Re RI[R, Ral,
XXVIII | -8-8=-16 | FIFMF™FyFmuFj = ci[R, R][Re. RIRn[R, RRu[R}, R],
XXIX | —4-4=-8 | FIF¥F™E FrpoF s = ci[R, RjIR(Rn. Rul[R. RA[Rm. RiIR;.
XXX 4+4=8 FUFYEM™ELFnnF ik = G[R, RiJR(Rm, Ri]R [Rm, R][R, Rdl,
XXXI 4+4=38 FPFMEMEy FrnnFis = CiR[Re, RI[Rm, Ra][R;, R[Rm, RalR;,
XXX | —4-4=-8 | F*FMF™FuFniFi = ciR[Re RI[Rm Ra]R(Rm, RII[R. R,
XXX 8=8 FIFME™FyF imFis = c1[R, Ril[Re, RIRm[R, RA[R}, Rul R,
XXXIV | -8-8=-16 | FIF“F™FyFsFim = c1[R, Ri][Re. RIRn[R, RIR[R;, Rel,
XXXV | =8-8=-16 | FIF¥F™F,F iy Fiq = R, RJRIRn, RiR[R}, Rul[Re, Ral,
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Types | Codficients | Using (3.27) (wherec* — x*) and integrate the-direction.

XXXVI 8=8 FPFME™FuFimFin = CtR[Re, RI[Rm, RiJRd(R; Rl[R,, Ral,
XXXVII | -8-8=-16 | FIFMF™F,FnFjs = iR, R][Re. RIRn[R. RA[R. RulR;,
XXXVIII | 8+8=16 FUFME™E FsFim = c1[R. Ril[Re. RIRm[R. RIRI[R). Rul.
XXXIX 8+8=16 | FIF*F™MEFrFin = ci[R, RiIR(Rn, Ril[R, RIR[R), Ril.
XL 8+8=16 | FIF¥*F™F,FimFjn = ci[R, RiJR{Rm, Ri]R[Rc, Rml[R;, Rnl.
XLI 8+8=16 | F"FF™FyFimFns = CitR[Rk RI[Rm, Rul[R, RA[R, Rl Ry,
XLII | -8-8=-16 | F*FYF™FFimFin = ciR[Re R][Rm, RiR(R, Rul[R, Ral,
XLIII 8=8 FIFME™FmFi Fjs = ca[R, Ril[Re, RIRm[Re, Rul[R.. RIR;,
XLIV -8=-8 FIFME™FFiFim = c[R, Ril[R. RIRnR(R, RI[Rj, Rul,
XLV 8=8 FIF“F™FymFisFjn = ci[R:, Ri]R(Rm, Ral[Re, Rl R[Rj; Rul,
XLVI -8=-8 I:IJFk#FmnFr’n;ttFm k = Cl[Ru R]]Rk[Rm Rn]Rm[Rl Rn][RJ Rk],
XLVIl | -8-8=-16 Ff{Fk'F”#kaF.#F” = ¢[R, Rj][Re. RIRn[R«. Rn]R([R}. R],
XLVIII 8=8 FIFME™FgFimFj = caR, Ril[Re. RIRmRd{R, Rrl[R;, R],
XLIX | -8-8=-16 | FIFF™F ,F Fj = c1[R, RIR{Rm. Ri]Rn[R., Ril[R}, Rl
L 8=8 F*FX E™FymfFinFiz = CLR R, RI[Rm, Ral[Re; Rrl[R;, RalR;,
LI 8+8=16 | FIF'F™FinFiFj = ciR, RI[Rq RIRn[R, RmlRdR;, R,
LIl -8-8=-16 | FIFMF™FFqF) = ci[R, RiI[R. RIRaR[Re. Rul[R}. R],
LIl 8=8 FIFYFMEinFogF i = c1[R;, RiJR(Rm, Ra][R, RnlRa[Rj, Rl
LIV 8=8 F¥*FYMEMF s FinFil = CiR R, RI[Rm, R]Rm[Re, Ral[ R, R]-

Here we define, as

o = f dx’ '”0( )w+ SIACOREI (4.38)

The twelveth-order terms (for instande! Fj; F Fm“Fk|an) become
fdx# Tr[2FU 3 (FRF™) 4+ By FRE™F i + (FFRE™)
+ FUFMEME FronF + FIFME™E i Fron
— 8FF; FYF™F o Fin — 8F FXE™F;; FynFin — 8F FXF™Fy FimF jn
— AFTFMEME P F — 4FTFNEME F R — 4R FRNEMR G F  Fa
+ 8FIFME™E FinFin — 8F FYNE™Fy FinF i + 8F T FXF™FyFi Fin
— 8F I FMF™FoFin F ) + 8F T FXF™ Ry FiF ) — 8F T FRF™Fi F  Fip |
2
= Tr| 2[R, RiJ* (IR, RI[Rm, Ral)? + C2[R;, RI[Re, RI[Rm, Ral’[Re, R] + €2 ([R;, RI[Re, RI[Rm, Rl

+ 2[R, Ril[Re RI[Rm, R][Ri, Ril[Rm, Ra][Re. RT + C2[Ri, Ril[Re, RI[Rin, Rul[Re, RI[R:, Ry][Ren, Ri
— 8c2[R;, RiJ’[Re, RI[ R, Ral[ R Rml[ R, Rl = 8¢2[R:, RiJ[Re, RI[Rm, Ril[R;, Ril[Re, Rml[ R, Rl
- 82[R, Ri][Re, RI[Rm, Ral[Re.RI[R:, R[R;, Rn] — 4c2[R;, Ri][Re, RI[Rm, Ral[ R, Rl [Re, RI[Ry, Ri]
— 4c2[R, Ri][Re, RI[Rm, Ral[ R, RA[Rm, Rul[Rj, R] — 4¢2[Ri, Ri][Re, RI[Rm, Ral[ R, Rml[Rj, Ral[Re, R
+8C2[R, Ril[Re; RI[Rm, Ral[Ri, RA[Rj, Rml[ R, Ra] = 8¢2[R;, R{I[Re; RI[Rm, Rul[Ri, RAI[R-Rul[Rj, Ril
+ 802[R, Ri][Re. RI[Rm: Ral[Re. Rml[R, R][R, Ra] — 8C2[Ri, R][Re, RI[Rm, Ra][Re. Rml[Ri, Ral[Rj. R]

+8C2[R, Ri][Re, RI[Rm, Ral[Ri, Rml[Re, Ral[Rj, R] = 8¢2[Ri, Ri][Re, RI[Rm, Rul[ R, Rml[Rj, RA[R;, Rn]],

(4.39)
where
o= [ ax w80 (w0 - 1) (4.40)
Therefore we obtain the twelve-dimensional (static) Skyrme action as
(4.41)

1 11
E1odsky = 3 d*"X ©E12 + C1E10,
Rll
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where&;, and&;p mean that the twelfth and tenth order termRpfespectively.

&12 = TI[2[R, R] ([Re RI[Rm, Ral)? + [R, RiJ’[Re, RI[Ren, Re][Re R] + ([R., Ril[Re, RI[ R Rn])2
+ [R, Ri][R, R][Rm, Ri][R, Ril[Rm, Ral[Re, R] + [R;, RJ[Re, RI[Rm, Ra][Re, RI[R:, Ri][Rin, Re]
- 8[R., RIJ’[Re, RI[Rm, Ral[Re, Rul[R., R] = 8[R, Ril[Re, RI[Rm, Ri][R., RiI[Re Rel[R, Ro]
- 8[R, RiJ[Re, R][Rm, Ri][Rc.RI[R;, Rml[R;, Ra] = 4[R., Ri][ R RI[Ren, Rul[ R, Rml[Re, RI[Ry, Ru]
- 4[R, RiJ[Re, R][Rm, Ril[R;, RA[Rm, RA][Rj, R] — 4[R:, Ri][Re, RI[Rn, Ra][R, Rul[Rj, Rul[Re, R]
+8[R;, Rj][R, R][Rm, Ril[R;, RA[R;, Rul[R., Ra] — 8[R:, Ri][Re, RI[Rn, Ro][R, RA[R-Ru][Rj, Ri]
+ 8[R:, Ri][R, R][Rm, Ro][Re, Rul[R;, RI[R;, Ra] = 8[R:, R{][Ri, RI[Rm, Ral[ R, Rrl[R;, Ri][R;, R]

+8[R., Ril[Re. RI[Rm, RiJ[R. Rul[Re, Ril[R;, R] = 8[R., RiI[Re, RI[Rm, Ril[ R, Rrl[ R}, RA[R. Ri] |
(4.42a)

&10 = TI{4[R, Ri]? ([Re RIRm)? + 4[R;, R1? (R R, R])? + 4R? ([Re, RI[Ren, Ru])? + 2[R, Ri1*Re R, Rl *Re

+ 4[R, RIP[Re RIR[R R] + 6([R. RiI[Re. RIRm)” + 4R[Re, RI[R, RiIR [Re, Rol[ R, R
+8[R. RiJ[Re. RIRn[R. R]Rn[Rc. R]
- 8[R. RjJ2[Re. RIRm[Re. Rl R + 8[R.. Ri]4[Re. RIRuRAR:, Rl + B[R, RiJ*Rd[Ren, Rel[ Res Rl R
~ 8[R. RiJ2RRn. RiJRn[Re. Ru] + L6RRe. R][Rm. Rol[Re. Rel[ R Re] — 8[R. R[Re RIRW[R. Ri][Re. Rl R
+ 8[R. RiJ[Re. RIRn[R. RIRAR:, Rl + 8[R. RIR(Rm. Ril[R.. RiJ[Ree Rl Ry — B[R RiIR{Rm. RJ[R: Rj]R[Rec Ry]
~ 16R[Re. R][Rm. RIR[Re. Rul[R. Ro] - 8[R. RI[Re. RIRa[Re. RI[R. RelR; + 8[R. Ril[Res RIRm[Re. RIR[Ry. Rl
~ 16[R, R]IR(Rm, RiIRAR, Ral[R}, Rl + 8R[Re, RI[ R, Rel[Re RI[R. R Ro — 8R [Re, R1[Ren, Rel[ Res RIRa[R:. Re]
~ 4R, Ri][Re. RIRn[R, Ral[Re. RIR; + 8[R, RI[Rc. RIRmR [Re. RI[R}, Rl ~ 8[R.. RIR{Rm. Ril[R. RelR[Ry. Ry}
~ 4R [Re. R][Rm. Ri]Ra[Re. RI[R. R] — 16[R. Ril[Re. RIRn[R.. RARn[R;. R] — 8[R.. RIR(Rm. Rel[R. RA[Rm. RIR;
+ 8[R. RiR{Ren, R R [Rm, Ril[R}. R + 8RR R][R. R][ R RJ[Re. Ra]R
- 16[R, R][Re: RIRa[R.. RARI[R, Rul — 16[R. R R{Ren, R R[R;. Rel[ Re, Ro] + 8R[R. R1[Rm, RIRAR:. Rel[ R, Ro]
~ 16[R. Ri][Re. RIRH[R. RA[R. RrlR; + 16[R. R][Rc. RIRn[R. RIR[R;. Rl + 16[R. RIR(Rm. Re][R. RIRr[R}. Ro]
+ 16[R, R]JR(Rm, RiIR [Re, Rl[R}, Ru] + 16R [Re, RI[Rm, Ril[ R RA[R, Rl Ry — L8R [Re. R[ Ry Ra]RAR., Rul[R. Rl
+8[R. Ri][Re. RIRn[Re. Ral[R. RIR; - 8[R. R][Re. RIRaRAR. RI[R;. Rl + 8[R.. RIR{Rm. Ril[Re. Rl R [Ry. Ry}
- 8[R. RiJR{Rmn. Ri]Ru[R. Ril[R}. R — 16[R.. RiJ[Re. RIRm[Re. R R [R;. R] + 8[R. R{][Re. RIRnR(R. Rrl[R;. R]
~ 16[R. Rj]R{Rm. Ro]Ra[R. Rl[R}. R + 8R[Rc. RI[Rn Ral[Re. Rrl[R. RolR: + 16[R. Ri][Ree RIRn[R. Rl R{R;. R]

- 16[R, RJ[R«, RIRmR[Rk, Rml[R;, R] + 8[R., Rj]R«[Rm, Ral[Ri; Rm] Ra[R;, Re] + 8R/[R«, RI[Rm, R]Rm[R«, Ral[ R, RI]]-
(4.42b)
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4.4 The detailed calculations

4.4.1 The Bogomol’nyi completion and the normalization constant in eight dimensions
We first lead the Bogomol'nyi completion in eight dimensions. Let us start at the following trivial equation which is analoc

from four dimensional one (3.6).
2

o 2
Tr ((5) EijamnoRRRe iﬁRuRmRnRo]) >0, (4.43)
wherea, 8 are real value constants which are defined as later. Expand the |.h.s. in the above equation:

2

2 2 2
((%) ijkimnoR RiRe iﬁRuRmRnRo]) - (%) e mospanimndRRIRCRORIR. % = aBeijamnoR RIRRIRRRe + A2 (RIRnRiRa)’
(4.44)

wherei, j,...,p,r,r=1,..., 7. The first term becomes

1\? 1
(5) 8ijk|mno<9pqumnoTl'[Ri RijRquRr] = aTr[([R;, Rj]Rk)2 ~ [R., RJR([R. RJR; + [R, Rj|?R2

Using the cyclic permutations of trace and the reparacement of indecies, we obtain

TR, RIR(R;, RdR = -Tr[R, Ri]R[Re. Rj] R, (4.46)

and
[R;, RI[R, RIRR - [Ri, R[R;, RiJRR; = 2[R, Rj][R, R]RjR«. (4.47)

Hence

1\? 1
(5) <9ijkImnogpqumnoTr [RiRijRquRr] = ETr[([Ri’ Rj]Rk>2 + [Rh Rj]ZRE - [RI’ Rj]Rk[Ri» Rk] Rj

+2[R.RIRRIRR - [R.RIRIRRIR|  (4.48)

The third term becomes

2
TrRRRR)” = 55 (1) Tr[[RRUIRGRIR. RIR.R] + R RIRe RIR RIR. K] - 4[R. RIIR RIR. RIIR, Rl

= %%Tf |(R.RIIR.R1)” + ([R. RiRe R1)” - 4R, R][Re RIIR RA[R,R]| (4.49)

Without codficients, (4.48) and (4.48) are just the 8th and 6th derivatives terms of the eight-dimensional Skyrme model resj
tively. Therefore we set the constants3 as follows to accord with (4.5):

a= 2\/3!C1, B = 2+/41cy, (450)

and then the Bogomol'nyi bound which is the second term of (4.44) becomes

Esgrme> FLOVES: | d'XTr 5 moRRRRRRR] (4.51)

where we using the relatio;jumnoR RjR«RiIRmRi R = &ijkimnoRi RjR«RIRmRaRo. Here we set; = ¢; = 1 then we obtain the
Bogomol’'nyi completion of the energy (4.9).
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We next consider the normalization consthlat We determine the normalization constant by the condition that the topolog-
ical charge of the single Skyrmion, becomes one. Using (4.63) and (4.4.2), we obtain

1 3
SijklmnoTrRi R]RKRI RmRnRo = (E) EijklmnoTr[Ri’ RJ][RK, RI][Rm, Rn]Ro
1\® , |
= (5) 8ijk|mnoTr[D22ij2k| (DBZmn)A(O)”(T + DCZmneJ; _ EC@mn)A(JreTO _ FAG)mneZ)A(Jr)

— DZECZH-@k.)”(*ZmneZ - DZFAE”@mEmneZ;)A(T - EDZC("D”)’Z%ZHEmneZ - FD2A®”2k|Emneg§<T .

(4.52)
The basis are
D?.DBterm: SijkimnoXi Tk ZmnRoX' = 57601,
D?.DC term : &ijkimnoZij ZkI Zmn€) = 7-5760Ls,
D?.ECterm : &ijkimnoZij Tk OmnX' €] = 5760,
D?. FAterm : &ijkimnoZij 2k Omn€b X’ = ~576QLs,
D?.ECterm: &ijkimnoZij Ok X Zmn€), = 576QLs,
D?. FAterm : EijkimnoZij Ok Zmnel X' = ~5760L,
D?.ECterm: &ijkimno®ij X' T Zmn€), = 576QLs,
D?-FAterm: &ijkimno®ij ZZmn€h X’ = ~5760Ls. (4.53)
Hence 3
Eijkimno TTRIRjRR RnR:Ro = (%) 5.5760 °sin® fo, f 1. (4.54)
Therefore we obtain
. 16 4 (1Y ©
feummnoTrRRijRuRmRnRo d'x= Tem (5) -5760Ttlg fo 5sirf fo, f dr
= 30720 x % (f(e0) - £(0)) = —9600¢*. (4.55)

Here we have used the boundary conditid@) = =, f(co) = 0 and have taken into account the factor that comes from the

six-dimensional spherical integration:

16
40w = 18 3.6 4.56
e T (4.56)

whereS® is the six-dimensional spherical surface a2 is the integral element of the six-dimensional sphere. Therefore the
normalization constant ic = —1/9600¢%.

4.4.2 Hedgehog ansatz

We first introduce the hedgehog ansatz mddmensions. Leef, be the (4 — 1)-dimensional ASD basis which is defined by
(2.167), then we introduce the4limensional hedgehog ansatz as

U(x) = exp(f(r)Re), (4.57)

wherex := xf/r, r? := x'x and f(r) is a real function, which is usually called as a profile function. The iridex from 1 to
4n-1. Fore' = —eg, this hedgehog ansatz satisfies the relatidh’ = 1,21, thusU € U(22"1Y). The right currenR with the
hedgehog ansatz becomes

U(X) = cosflymi +sinf&, (4.58a)
aU = —sinfo, f &1z + (cosfo, f —r~tsinf) K& + 1 sinfel, (4.58b)
R = U4U" = rtsir? f&lpem: — (—r’l sinf cosf + &, f) %% —rtsinf cosfe +rtsir? fe' &, (4.58¢c)
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wherex' := K&’ (andx = K'e).
Using the lemma 2.4.1 argke’ = €' = (4n — 1)11, we obtain

e %€l = €' (2% 11 — 6%") = 2% — (4n - 1)&" = —(4n - 3)X', (4.59a)
e x'e =€ (2%l —€'%) = 28" + (4n - 1)R = —(4n - 3)&’, (4.59b)
e'x'e = e (-2x 11 — €/&) = 2% + (4n - 1)&" = (4n - )K" (4.59¢)

Using these results, we give the useful following relations:
RR == ((0 f)* + (4n = 2)r 2 sir? ) 1pons, (4.60a)
[R.Rj] = —r~?sir? % + 2(r2sir? f —rsinf cosfo, f) @& - 2r 7 sir? f5, f@);. (4.60b)

where we defing;; := €e; —e}a = aeJT —ee (because of = -e) and@;; = Xe} - ;€. Here the matriceX;; and®;; satisfy
the following relations

0% = -5, i@ = 8(2n - 1)K, 0i;Zij = -8(2n - 1)X',
©2 = —4(2n— 1) 1o, (%) = -4(4n - 1)(@n - 2) Lo, (4.61)
The squares of the commutat®t; [R;] is evaluated as
[R.Rj]* = -8(2n - 1)r2sir? f ((4n - B) 2 sir? f + 2(; 1)?) 1zn. (4.62)

Derivation of the eight-dimensional Skyrme model with the hedgehog ansatz

Here we will lead the energy functional with the hedgehog ansatz (4.16). In the following, we use the seven-dimensic
hedgehog ansatz thus the roman indecgsun from 1 to 7. For later convenience we rewrite the right current as

R =rtsir’ f&1g - (—r’1 sin f cosf + a,f) %% —rtsinf cosfe +rtsir? fel &'
=t A%1ls - B&&' - Ce + Ag'X’, (4.63)
whereA = rtsir? f, B:= —r1sinf cosf + g, f andC := r-1sinf cosf. The square of right current is
RR = —((9:)? + 6r?sir? ) 1s. (4.64)
The commutator of the curreR is
[R,Rj] = —r2sir? f%;; + 2(r‘2 sir? f —r~sinf cosfa, f) (k€] — %e)R" - 2rsin? 9, f(Xe] - %;e)
= —DE”- + E@ij)’ﬁ - F@ij, (4.65)

where we have defindd := r=2sir? f, E := Z(r*2 sif f —rtsinf cosfarf), F = 2r1sir? fo, f and@;; = )?ie}' — %;€/. Now
(4.61) becomes

0% = -%'@jj, %@ = 24X, 0ijZ;j = —24X',
02 = —121,, (%)) = -168L. (4.66)
The squares of the commutat®t [R;] is
[R.Ri]? = =242 sin? f (572 sir? f + 2(3; )?) 1s. (4.67)
Using this result, we can calculate the first term in (4.5) as
(IR. RJ—]Z)2 = 16- 6%~ sin® f (25~ sin* f + 20r 2 sir? £(9, f)? + 49, F)*) 1s. (4.68)

Things get more involved when we calculate the second term.
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We expand the second term in (4.5) with the hedgehog ansatz as

([Ri, RiI[R« RI])2 = D% T Zij 2w — DgE(zijzkIEij(akl)A(T + X ZuOi X Ty + Zij @R i Ty + ®ij>?TZk|2ijZk|)

+ D3F(2ij2k|2ij®k| + Zij 2w 05 2y + Zij O Zij X + ®ij2klzij2kl)
+ DX(E? + F?)(Zi; 210 O + 010 ZijZua)

+ D?E%(Zj 0k i OuR’ + ZijOuR O R Ty + O X TyZij Ok’ + 04K Z0;; R T

- D%E F(ZijG)kIRTziijl + ZjOuR 02 + O K Ty Zij O + 04X T O

+ 20T O R + Zij00; X Ty + O ZuZi; OuR' + 0} T @ R i)
— DE(E? + F?)(%;0u% 0;;0 + 0K 2400y + 00 ZijO R’ + 6;;00;; X T
+ DZFZ(ZiijIZij(’DkI + ZijOu0ij I + O3 X Zij O + ®i12k|®ij2k|)
+ DF(E? + F?)(Zij0u0; Ok + 01 20Oy + 6O Zi O + OO0y ) + (E? + F?)%0;, 00} Oy. (4.69)
Here we have used the relati@y X 0 X" = 0;;0y and®;; KOy + B0k’ = 0. We stress that terms that contain the odd

number ofx’or X' vanish under the trace of the matrices. Since we need the trace of (4.69) in the energy functional, we neglect

these terms and never calculate them in the following. Exploiting this fact, we are left with the terms that contain the even
number ofi¢

D* term : i XX T = 13441,
DE term : T OuR + -+ O R T Zij T = 4.1921g,
D?(E? + F?) term : %2k 8i Ok + OO Ty = -2-3841,,
D?E? term : %Ok Ok + 0K @ KT Ty = 2961,
%Ok 0K Ty + 0K T Zij Ok = -2-3841,,
DE(E? + F?) term : T OuR @O + -+ + B OO K Ty = —4.1921g,
D?F? term : %Ok Zij O + O 2O Ty = 2-8641g,
Y| OK0ij Xk + O Ty O = —2-3841s,
(E2 + F?)?term : 0i;0x0;;Oy = ~961s. (4.70)
With this result at hand, we find that the second term in (4.5) becomes
Tr([R. R][Re R.])2 = 1536 ~*sir’ f(~5r~*sin® f + 20r~2sir? (5, )2 - 8(0, f)*). (4.71)

We calculate the other terms by same method as follows.
Expand the third term in (4.5) with the hedgehog ansatz as

[R,R][R. RI[R, RJ[R;,R] = D*%ij 2z — D3E (Zijzklzik®jl K+ T ZaOKK T + ZijOuX ZkZ) + O ?Tzklﬁikﬁﬂ)
+D3F (Zijzklzik®jl + i ZuOiZj + ZijOuZikXj + ®ij2k|2ik21|) + D*(E? + F?) (Eijzkl®ik®jl + ®ij®klzikzjl)
+ D?E? (00X @5 X' + ZijOuk Ox X T + 0 K TyZi®; X' + 0K Ok Z;)
-D%E F(Ei (OWR ZKO) + Zij @R Ok + 0K TZik®) + O X Ty @x X
+ T OuZkO) & + ZjOuOKX T + O ZZu®; & + O T XL )
— DE(E? + F?) (500X 0@ + 0K 2040 + 00 i@ X' + 00Oy K'Z; )
+ D?F? (zij@)klzik@jl + Zij OO X + O Xk ®j + ®ij2k|®ik21|)

+ DF(E2 + F2) (Zij®kl®ik®jl + 0 ZyOKOj + B0 ZiKO; + ®ij®kl®ik2jl) + (E2 + F2)2®ij®kl®ik®jl R (4.72)
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and
D* term : i ZZKE) =
D°E term : T ZZik@p K + -+ O R TG ZiE) =
D?(E? + F?) term : T ZOkOj + OO ZiKE) =
D?E? term : YO Zk®) R + @ X Z@X'Z) =
TOuR OKK T + O X Tz ®; X' =
DE(E? + F?) term : %Ok OxOj + -+ + B;jOOKX T =
D?F? term : ZiOuZikOj + B ZkOKX) =

(E? + F?)? term :

Hence we obtain

ZijOxOiZj + O ZnZikOj =
0ij0OKO; =

~12768ls,
—4.1824,,
2. 481,
~2. 55214
~2-3121,,
4241,
—2.648lg,
—2.3121,,
121

Tr[R, RI[R RI[R. RA[R;, R] = 768 ~*sin f (~55r~*sin f — 80r 2 sin? f(a, f)* + 25, f)*).

Using (4.64) and (4.67), we easily calculate the fourth term in (4.5) with the hedgehog ansatz:

Tr([R. Rj])2 RZ = 1922 sir? f (30r*sin® f + 172 sir? £(9, ) + 29, f)*).

Expand the fifth term in (4.5) with the hedgehog ansatz as

2 of o
([R., Rj]Rk) = —DZAZEH'Z”’ - DA(FC + EA) (ZiJ'@in' + @inTEij)

+ (DZB(B+ 2C))2ij>“dzij>“d + (DB(EB+ EC) + DC(EB+ FA)) (zijf(*@i,- + @ijzijf&)

+ DZCZZijef(Eije‘i - DC(EC - FA) (Zijei(aijf(*ef( + ®i,->“<Tef(2ijeD
+ A2D22ijei)“<*2ije‘i>‘<? - AD(EA+ FC) (Eijeﬂf(*@ijel + @i,-ef(zijefj(*)
+((E? + F)(B® - A2 + 2BC))®;;0;; + (EC - FA)?0;;X'e[0; X ef + (EA+ FC)%0;€[0); €] + O(X'), (4.76)

whereO(X") means the term that contain the odd numbex of X'.

D2A? term :

DA(FC + EA) term :

D?B(B + 2C) term :

DB(EB + EC) + DC(EB+ FA) term :
D2C%term :

DC(EC - FA) term :

AZ2D? term :

AD(EA+ FC) term :

(E2 + F?)(B? - A2 + 2BC) term :
(EC-FA)?term:

(EA+ FC)? term :

Hence

5% =
% X O + 6% % =
TRz K =

T X0 + 0% K =
Tije i 6 =

Zije 0 X g + O K efXijg =
T X Nijg X =
Sijg X Oije + Ojeli X’ =
00 =

©;jX'el®;X'e =

©ij60j8] =

—168lg,
-2-241g,
72,
2-241g,
5041,
2-72g,
—1201g,
—-2-72g,
-121g,
361g,
—601g.

Tr([R. Rj]Rk)Z =192 2sin? f (10r*sin’ f + 132 sin? f(a, 1)? - 2(5, f)*).

79

(4.73)

(4.74)

(4.75)

4.77)

(4.78)



80 CHAPTER 4. SKYRME MODELS IN EIGHT DIMENSIONS AND MORE HIGHER DIMENSIONS

Expand the sixth term in (4.5) with the hedgehog ansatz as

[R. RIRIR, RIR; = D?AK i Zik + D?A% (RZi Zue] & + R;Zij €K Tic) + DA(EA - FB) (R Zij Ok’ + KX O3 & Zic)

— DA(EA+ FC) (XZijOw€] + R;0;;6]Zik) + D?B* KTy X Zp X + D?BC(RZij X e + X Zij €[ ZuX')
+ DB(EB+ FA) (X&) Zij R O + X %0; ZuX') - DB(EC - FA) (KT K O K€ + %0, e[ ZycX)

+ D’C’Z;je[Zi€] + DC(EB+ FA) (X Zi 6[Ok + %®ijZi€] ) - DC(EC - FA) (i g[0uX €] + ©;;X e[ Tie])

+ A’D?%; e[ R Zie] X' + AD(EA- FB) (%%l R Ouk’ + %0 K Zue[X')

— AD(EA + FC) (X €[ X O€] + 0;e[Tke]X) + (EA- FB’&;%®;j X Oy X'

— (EA- FB)(EA+ FC) (%0 X O] + X0;;€[0kX) + (EB+ FAY’R; %0 Ok

— (EB+ FA)(EC - FA) (%0;j0xX'€] + %0;X'gO)

+ (EC- FAY0;X'g@xX & + (EA+ FC)’0;je0ie] + O(X), (4.79)
and

D?A? term. : i RZij ik = —241g,
D?A? term. : RZi i€ K+ RZi €K T = ~2- 961,
DA(EA-FB) term. : KR ZijOKR + ReXjO X ik = -2 121,
DA(EA+ FC) term. : ZijOe] + X0 efZik = ~2- 721,
D?B? term. : KR Zij Kz X = ~241,
D?BCterm. : KX ﬁfzike} + X Zije Tk’ = -2 1441,
DB(EB+ FA) term. KK Zij K O + RO Tk = 2121,
DB(EC - FA) term. : %2 X OxK'el + 0 X Tk’ = -2 721,
D?C? term. : Eije]tzike} = -1008lg,
DC(EB+ FA) term. : XZijel O + xk@)ijzike} = 2.121g,
DC(EC - FA) term. : T elOxx'el + @ K'g kel = -2 14414,
A’D? term. : e X Tie X = ~240L,
AD(EA- FB) term. : T g% Ok’ + %@ X Tie X' = 2121,
AD(EA+ FC) term. : g% 'Oke +0;e[Tie X = 21441,
(EA-FB)term. : R %O K Oy K" = —61g,
(EA- FB)(EA+ FC) term. : %0i X Oel + %,0;e[OR" = -2 61g,
(EB+FA)? term. : R %@ij Ok = —61s,
(EB+ FA)(EC - FA) term. : %0 OkX'€ + X0;; X' €O = 2. 6lg,
(EC- FA)term. : 0% efork'e = —421g,

(EA+FC) term. : i€ 0ke] = 301g. (4.80)

Hence

TR, RIRJIR, RIR; = 192 2 sir? f (~25r~*sin® f — 16r~2sir(d, f)? — (4, )*). (4.81)
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Expand the seventh term in (4.5) with the hedgehog ansatz as
[R, RJ[Re RIRjRc = D’(A% — B? — 2BO)%; X% Zii + DX(A? — BO)Z;jZii®@ X' + D*(C? + A)ZijZuie €]
- DE(A2 - B2 - ZBC) ()’i]‘ )”(kzi,-@ki)? + )A(j )A(k®ij )A(Tzki) - DE(A2 - BC) (Zij(aki@jk + ®ij )’ZTZki@)]‘k)’ZT)
- DE(C2 + Az) (Eij(akif(*e;ei + ®ij f(TEkie]TeD — DF(AC + BA) (zij®ki®jk + @ijEki(ajk)
+ (E? + F?)(A? - B? - 2BC)%; %@ Oy + (E* + F%)(A? — BC)®;; 0@ X'
+ (EZ + FZ)(CZ + A2)®ij®kie}er< +O()’ﬁ), (482)
and

DZ(A2 -B?- 2BC) term. : )’Zj szijzki = 241,
D?(A% - BC) term. : T Zhi®pX = —2401,

D2(C? + A% term. : ZijzkieJTelz = 6721,

DE(A? - B2 - 2BC) term. : RiRZij Ok R + RO X Ty = 21214

DE(A2 - BC) term. : 2Ok + @)ij)'Z#Zki(ajk)'zT = -2-601g,

DE(C? + A%) term. : %ijOuX €6 + 0K Tyielel = 2- 961,

DF(AC + BA) term. : 2ij0Oki0Ojk + O ZiOj = -2 -601g,

(E% + F?)(A2 - B - 2BC) : ICTONES 61g,

(E2 + F?)(A2 - BO) : 0ij0kOKKX = 0,

(E2 + F2)(C? + A?) ©i0eje, = 181s. (4.83)
Hence
Tr[R, RII[R RIR|Rc = 192 2 sir? f (15~ sin® f + 14r 2 sir? £(9, f)? - (3, f)*). (4.84)

Expand the eighth term in (4.5) with the hedgehog ansatz as

[R. RIIR[R, Ri]R( = D2A’X XZij i + D?A? (X% i e X' + KZije/ K Zy;) + DA(EA - FB) (R XcZij Ok + K@i & T )
— DA(EA+ FC) (%Zij0xj6} + %Oyj&/Zi) + D?B?R 1Zij X &' + D?BC (X K Zij6), + KZij & %)
+ DB(EB+ FA) (R &Zij X O + % %05 Zk;X) - DB(EC - FA) (KT X' @K €] + %0, K e/ T %)
+ D*C?%;; € Skj6f + DC(EB + FA) (XZij€ Oy; + X@;jZj6)) - DC(EC - FA) (i O %'e) + 0 K€ 256
+ APD?%;je/ K Sy el X + AD(EA- FB) (RZi & K 0GR + %0; X' Z;g%)
— AD(EA+ FC) (i€ X'Oy€] + Oy T e[ &") + (EA— FB)’R %Oy X O &'
~ (EA- FB)(EA+ FC) (%0, Oje] + 0i;€/ 0;X) + (EB+ FAPX XD O
~ (EB+ FA)(EC - FA) (200X g} + %0;;X'¢ 0y))

+(EC- FAY’0;X'e'0y;X'e] + (EA+ FC)?0;;€/ e + O(X"), (4.85)
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and

D?A? term : KR Zij Xk = ~241,

D?A? term : KT kil KT+ ReZije Kz = 2. 1441,

DA(EA- FB) term : K RcZij Ok R + R K@i X Zyj = —2- 121,

-DA(EA+ FC) term : KT Oje] + KO Ty = —2-121g,

D?B? term : KR K T K = —241g,

D?BCterm : KT X Zyjel + i€ TR = -2 14414,

DB(EB+ FA) term : X RZij K Ok + R RO Ty X = 2121,

~DB(EC - FA) term. : KT X OkRel + %O K €/ Ty R = ~2-121,

DC?term : %€ 26l = ~1008Ls,

DC(EB+ FA) term : RZij€ O + X Zkje] = 2721,

~DC(EC - FA) term : e 0K e + 0K ey el = -2 1441,

A2D? term : el KT el = —7201g,

AD(EA- FB) term : i€ KO R + %0 K el K = 2721,

—-AD(EA+ FC) term : el K Ojel + 08 el kT = 2. 1441,

(EA-FB)?term: X %O K Ok = —61s,

—~(EA-FB)(EA+FC) term : %,0; X kel + %Oije Ok = -2 61g,

(EB+FA)?term : %0 Ok} = ~61s,

~(EB+ FA)(EC - FA) term : %00k %€l + %O X e Oy = 2. 61,

(EC-FA)?term : @K' O Xe = ~421g,
(EA+FC)? term : i€ Okje] = 301g. (4.86)

Hence

Tr[R. RJR[Re. Rj]R« = 1922 sir? f (=25~ sin® f — 1602 sir(d, )% - (9, f)*). (4.87)

Therefore the results are

Tr([R. Rj]z)2 = 4608 ~*sirf f (250~ sin® f + 20r 2 sir? (9, ) + 45, 1)*),

Tr([R. Ril[Re. R])Z = 1536 ~*sin® f(~5r~*sin® f + 20r 2 sir? £(9, 1) - 8(, f)*),

Tr[R, R[R RI[R. RA[R;, R] = 768~ sin® f (~55r~*sin* f — 80r 2 sin? f(d, f) + 25, f)*),
(

Tr([R, R,—])2 RZ = 1922 sir? f (30r*sirf f + 17r~2sir? £(5, 1) + 2(3; 1)),
Tr([R, R,-]Rk)2 =192 2sir? f (10r*sin’ f + 132 sir? £ (3, f)? - 2(9, f)*),
Tr[R. RIRJIR, RIR; = 192 2 sir? f (-25r~*sin® f — 1612 sir(d, f)? - (4, 1)*).
Tr[R. RIJ[Re. RIR|R. = 192 2 sir? f (15r~*sin* f + 142 sir? £(9, f)? - (4, f)*).
Tr[R. RJR[Re, RiR« = 192 2 sir? f (~25r~*sin® f — 161~ sir?(d, f)? — (4, 1)*). (4.88)
Collecting everything altogether, we finally obtain
Trlez (IR. RIIR. R)” + 2 (IR, RiIRe R1)’ - 4e2[R, R1[R. RIIR. RIIR;. R
+4c1 ([R. R])’ R+ 4c1 ([R. RIRY)” - 4ci[R. RIRIR. RR
+8alR, RI[R. RIRR -~ 41[R. RIR[R. RIR|
= 23040(3cyr*sirf £(3, )% + 4r~®sir® f (4cy(d; )7 + ¢1) + 12cor BsirP f). (4.89)
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%]l 000 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 099

a=1/3 || 0.0100| 0.1036| 0.2154| 0.3379| 0.4743| 0.6300| 0.8143| 1.046| 1.368 | 1.939| 4.595
a=1/2 || 0.0100| 0.1054| 0.2236| 0.3586| 0.5164 | 0.7071| 0.9487| 1.278 | 1.789 | 2.846 9.9

x: a=1 0.0101| 0.1111| 0.25 | 0.4286| 0.6667 1 15 2.333| 4. 9. 99
a=2 0.0102| 0.1235| 0.3125| 0.6122| 1.1111 2. 3.75 | 7.777| 20. 90. 9900.
a=3 0.0103| 0.1372| 0.3906| 0.8746| 1.8519 4. 9.375 | 25.93| 100. | 900. | 9.9x 1¢°

Table 4.2: mesh scale of the fractional type=(1): x vs. X

Takingc; = ¢, = 1 and introducing the overall facttfg8 dQs = %Hrﬁ, we obtain the energy functional (4.16).

4.5 The numerical analysis

In this section, we will discuss numerical calculations to solve the hedgehog equations.

In numerical calculations, we can not directly treat the (semi-)infinite regian[0, o] because of the region that can be
calculating is finite. Hence we have to transform infinite regido finite regionx; such asx — X € [0, 1]. Various types of
scale transformation are known for this purpose and we need choose suitable scale transformation for each problem. We u
use the fractional type scale transformation:

X
(1-%32
wherea € {1/4,1/3,1/2,1,2,3,4} is a non-linear transform parameter amc R is linear transform patameter. This scale
transformation holds more informative around origin than infinity, thus it is enough that we use this type in usually. Now “mc
informative” means that mesh points are closer. The reason that we now rastrigy4,1/3,1/2,1, 2, 3,4} is that there is not
the formula of algebraic equation solutions of degree more than five in generally. However it is hard that we calculate the
of a = 1/4 or 4, thus we omit these case in this paper. Table 4.2 denotes the scale relations emiteenin the fractional
type b = 1). Although we have to take the suitable non-linear transform paranfitereach case, we can change the scale with
changing the linear transform parameteiThus we usually take the most simple case 1 and adjust the scale with changing
b.

Using the chain rule, the transformation of derivative term (order less than three) becomes

x=b1 (4.90)

By = 0xX - O3, (4.91a)
32 = 3y (0<% - 9%)
= 02% - Oy + (0x%)? - 02. (4.91b)

For this reason, we need a representatiof). The inverse functions of the scale relation (4.90) for emahe

~2. 343022 + 243x(9 + BT+ 4650))

a=13=%= 3 , (4.92a)
623(9+ /3(27+ 4b3x3))
h2y2 \/ 22
a=1/2> %= bx””z( 4+ 0% (4.92b)
" bx
a=1=%= . (4.92c)
1+ 2bx— V1 +4bx
=2 %= 4.92
a=2= % o , (4.92d)
2 P (~ob22 + 3R+ 27DX)
a=3=>%X=1- . (4.92e)

+
3(—9b2x2 + 4/3b3x3(4 + 27bx)) 18'/30x

We now consider rescaling the Hedgehog equations with using the case b{and more generalization):

[0.00] 57 1 T € [0.2nad. st 1 =b7 r (4.93)
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then the derivative terms becomes

A = O,F - O = B(Xmax— ) - 0, (4.94a)
OF = 07 - O + (0rF)? - 62 = B*(Xmax — T)° (~20r + (Xemax— T) - 67) , (4.94b)

wheres := b/Xmax-
Using these results, the Hedgehog equation in four dimensions becomes

(r2 + 2sir? £)02f + 2rd, f + sin 2f ((a, f)2 - 1- sir? f)

r2

= 7 (D772 + 25SirP f (Xemax — )) (max — F)202 F + 287 (1072 = 2'Sir? f (Xmax = 7)) (Xmax — )0 |

(4.95)

+ sin 2f (ﬂz(xmax - )40 )? = 1 - 0% (Xmax — f)ZS"Fi f ) :

In numerically calculation, dividing by zero is not good hence we define the normalized fundtipidl, f”) as multiplying
72 on both side in the equation:

F(F, 17, 1) = 22 (0722 + 2 Sir? f (Xmax — F)?) (Xmax — F)202 T + 26272 (b72F — 2ir?  (Xmax — F)) (Xmax — )0 f
+ in 2f (B2 (Xmax — )4 (97 ) = 12 — b2 (Xma — ) SIPP ). (4.96)

Similarly, the Hedgehog equation in eight dimensions becomes

i
Sif? £ (3% + 16 sirf ) 92f + 6r sir? £, f + 3sin 2t ((r2 +8sir? 1) (3, f)? - 2sir? f - 82 f)

r2

= 7 sir? f (307272 + 16 Sirf f (Xmax — F)?) (Xmax — F)?07 F + 267 sin? £ (3072F — 16 SirF f (Xmax — 7)) (Xmax — F)?0; f

. 2 (=22 . 2 2 2 . . bz(xmax_ I’;’)2
+3sin 2f (/3 (07272 + 8 Sir f (Xmax — F)?) (Xmax — 1)2(0r f)? = 2sir? f — 8 sirf’ ff—z). (4.97)

We define the normalization function@(f, f/, /) as multiplyingr? sin f on both side in the equation:

F(F, 7, ) = 2 sinf (30722 + 16 Sirf f (Xmax — 7)?) F(Xmax — )?07
+ 287 sin f (3072F — 16 Sirf f (Xmax — 1)) F2(Xmax — F) %0 f
+ 6 cosf (82 (0272 + 8 Sir f(Xmax — 1)?) F%(Xmax — 1)2(0r ) — 2'Sir? {72 — 807 sin® f (Xmax — 7)?).
(4.98)

Of course, the boundary condition beconi€8) = n, f(Xmaxy) = 0.

The Hedgehog equations are second ordinaffigidintial equation with Neumann boundary condition, thus we solve the
equations with using an appropriate numerical method of boundary value problems, such as a shooting method. In this paper,
we used a functional Newton-Raphson method (please see the details below).

We now calculate the functional derivative (lower order than two) which is used at the functional Newton-Raphson method.
In four dimensions, the functional derivatives are

w = 28%b72 sin 2fF2(Xmax — 1)*02 f — 47 sin 2 F%(Xmax — )0, f

+ 208 X (577 (Xmax = )*(0r )7 = 72 = b?(Xmax = ) SiN? f) = 0%(Sin 2F)%(Xmax — F)°, (4.99a)

OF(f, £, 1)
30 f)

OF(f, f, £7)
8(d2f)

= 2672 (1072 = 2'Sir? f (Xmax = 7)) (Xmax — F)? + 267 Sin 27 (Xmax = 7)*6r (4.99b)

B2 (0722 + 2 SirP £ (Xenax — F)?) (Xmax — F)%. (4.99c)
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In eight dimensions, the functional derivatives are

w = B2 (3b‘2 cosf 72 + 24 sinf sin 2f (Xmax — F)Z) P2 (Xmax — F)20%
+ 282 (Sb‘2 cosf F — 24 sinf sin 2f (Xmax — F)) P2 (Xmax — F)?05 f
— 6sinf (87 (0727 + 85I f (Xmax — F)%) P (Xmax — F)%(9r f)? — 2sirP 72 — 807 sin* f (Xnax — T)°)
+ 12 cosf sin 2f (4877 (Xmax — 7)*(0r f)? = % = 807 SI? f (Xmax — 1)°). (4.100a)
w = 26 sin f (30727 — 16 Sir? f (Xmax — T)) P (Xmax — T)°
+126° cosf (07272 + 8Sir? f (Xmax — F)?) P2 (Xmax — 7?07 . (4.100b)
w = p%sinf (3b‘2F2 + 16 Sirf f(Xmax— r)2) P2 (Xmax — F)>. (4.100c)

4.5.1 Functional Newton-Raphson method

The functional Newton-Raphson method is able to regard as an applied method of the well-known Newton-Raphson met
which find root of function, to solve fferential equations. In various context, this method is simply called as the Newton
Raphson method but we call the solving method ffedéential equations as the functional Newton-Raphson method to distinguist
these two method. Although we can solve the partifiedéntial equations with using the functional Newton-Raphson method
also, we focus our discussion on the ordinatyedential equations case.

The functional Newton-Raphson method is one of the iterative methods which reduce residuals step by step. Rou
speaking, the residual means that an error of functional values on current step. This method can be used for any im
functions, thus it is useful when we solve an non-linear systems. Although the Newton-Raphson method can be aptitied an
order diferential equations, for simplify, we restrict the following discussion to the second order ordiffargutial equations:

F(F(X). F(3). £7(x) = 0, (4.101)

Let x be a variable and define the closed intemval [ xini, Xsin]. Divide this interval intoN equal parts. Now we define some
values which are used below discussions;

mesh size :  §X = (Xin — Xini)/N, mesh point: X = Xini +1 - X%,
function value on the mesh point : fi := f(x), functional on the mesh point : F; := F(f;, f/, f’).  (4.102)

wherei = 0,...,N. In the iterative method, we have to give a reasonable starting value of functffs%,cmnote this starting
value. Of course, this starting Va|l]|éo) does not satisfy the functional equation:

F(H9, 59, 179) 20, (4.103)

where @ = 8, fO(X)ly,, 1@ = 32fO(X),x. Suppose that the functional equation is satisfied by using a correction valu
6 fi(o):

E (fi(o) i 5fi(0)’ fi/(O) + 6fi/(0)’ fi/,(O) + 6fi,,(0)> -0 (4.104)

1(0) :

We call the correction valuef® as the residual. Assume that each residdfl, 51/, 51 in (4.104) is not large, and then

the Taylor expansion with regardirfg f/, f”” as independent values becomes

©
F (10, 1O, 7O) (f)

(0) (0)
o 5fi(°>+(ﬁ) 6fi’(°)+(£) 51"+ 0(@f)?) = 0. (4.105)

at’), ot ),

0 .. . .
Here the symbo(%)i( ) meanso;F(f, ', f”) (F0=19. £(9= 0. £ ()= ") and the others are similar meanings. Now we ignore
residuals more than second order, and then rewrite the equation including only the residual on each mé§h, pdin® fi, 1
by replacing the dferentialsf’©, 51 with a finite diference of residual (see this below). We take this operation on whole
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mesh poinf = 0,..., N and obtain a linear system bf+ 1 equations in th&l + 1 residuani(o) (i=0,...,N), call this system
as the residual equations. The fiaients of this system has onb/©, 3¢ Fi|©, 3. Fi|@, 3¢ Fi|@, hence the residuals® are
uniquely decided when we give the starting vafﬁl%. We obtain a corrected function valdiiQ) by correcting this residual:

fi(o) +6fi(0) N fi(l)' (4.106)

This new function valug® is nearing the truth solution than previous function vaf{f . Therefore we can calculate a next
residualdfi(l) by peforming same calculations, and finally obtain the truth soluiiom the equation (4.101) by calculating this
correcting again and again until the residt‘iqﬁm) is enough small. The algorithm like this is called as the functional Newton-
Raphson method.

In above discussion, still we do not give the residual equations explicitly, let us give these equations in the following. The
explicit form of the residual equations isfiirent with the type of boundary conditions, namely the boundary problems (i.e.
the Neumann boundary condition) or the initial problems (i.e. the Dirichlet boundary conditions), and the order precision of
using finite diference. In the boundary problems then the function value at the both sideN is fixed, thus the functional
Newton-Raphson method correct the function value in the inaet, ..., N —1. On the other hand, in the initial prolems, we fix
the function value at the initial poimt= 0 and correct the function value in the other pointsl, . .., N. Moreover, because that
the number of using mesh points by the finit&elience is changed with the order precision of using finiféedince, we have
to use the forward or backward finitefidirence at suitable points around the both side. We now use the second order precision
finite difference and consider the boundary problems. For simplify, in below discussion, we omit the index that is meant step
numbers such th&?.

The second order presicion central finit€elience is given by
. fiy1—fig fiyr —2fi+ fig

of ot =
: 26X ! (6%)2

We now consider the boundary problems thus the region of calculations becemes ., N-1. Hence it is enough that we use
the above central finite fierence when using the second order precision finffergince. Using (4.107), the expansion equation
(4.105) with ignore higher order residuals becomes

1 (0F 1 (0F oF 2 (0F 1 (0F 1 [0F
(50}, ~ e e 274+ [ (55 )+ o ) o7+ [ ) - o (7)o 000

wherei run from 1 toN — 1. We note thaé f, = 6 fy = 0 because of the boundary problems, and we obtain the residual equation
by collecting the abovél — 2 equations:

(4.107)

B, C; 0 ‘.- 0 ofy Fq
A B GC e 0 ofr F,

; Lo Col=] | (4.109)
0 An—2 Bn-2 Cn—2||dfn-2 Frn-2

0 -~ 0 An-1 Bn-1/\0fnag Fn-1

where

1 (0F 1 oF oF 2 oF 1 (0F 1 oF
A= glan) - wo o) 8= (5r)  mlor) = alor) - ww o) @10

This equation is the system Bf-2 linear equations, thus we can numerically sovle the residdafs= 1, ..., N-1) with using
an appropriate algorithm of matrix calculations. Using these residuals, we correct the function value step by step. At finally the
residual becomes enough small.

Some comments are in order. First, the residuals around begining step when the function fiatueodi solution are
sometimes big values and it is not so easy to converge one. Hence we use the modified correction equation which is multiplied
the appropriate boost parametearound begining step:

fi+edfi > fi, (4.111)

for example we take = 0.01, 0.1 etc. then the residual more earlier converge than using original one (4.106).
Second, the matrix of the residual equation (4.109) is the band matrix thus the calculation can speed up with using the
appropriate numerical package (for example “LAPACK").



Conclusion

In this paper we have studied mainly two topics: the one is about the ADHM construction and the (self-dual type) instanton
4n dimensions, the other is about the Atiyah-Manton construction and Skyrmions in eight dimensions.

It is well known that the usually four-dimensional ADHM construction is based on the quaternion. Naturally, it is expe
that a algeraic basis which is generalization of the quarternion will palys important role in the higher dimensional ADH
construction. Indeed, we have shown that the framework of th@ifhensional ADHM construction was construced by using
the ASD basis which is constructed from then (4 1)-dimensional Ciford algebra. Moreover we have proved that time 4
dimensional ASD tensor, which is generalization of the 't Hooft symbol in four dimensions, from the ASD basis satisies
Hodge duality equation infddimensions. The Hodge duality equation is more generalization of the ASD equation. ffbedCli
algebra is one of generalization algebras of the quaternion, thus this scheme is the straightforward generalization of the u:
ADHM construcion. The (self-dual type) instanton imdimensions is defined as solution to thedimensional ASD equations.
Compared with the ASD equation in four dimensions, the equatiomididhensions is non-linear. We have found that there
are two ADHM constraints which is duality equation the ASD equation, one of these is the straightforward generalizatior
four-dimensional one. The other ADHM constraint, which is the new constraint, corresponds to the non-linearity of the higkt
dimensional ASD equation. One of the most interesting things is that the more non-linearity of the ASD equations is accort
as dimensions increase but the ADHM construction does not need essentially new constraints more than what is shown i
paper. We have shown that our construction reproduces the known BPST one instanton in 4n dimensions by using the sin
generalization ADHM data of four-dimensional one. On the other hand, unfortunately, we have found that the straightforw
generalization of the well-known four-dimensional multi-instanton ADHM data, nhamely the 't Hooft type data and the JNR ty
data, do not satisfy the second ADHM constraint in generally. These multi-instanton ADHM data become well defined if ol
if the data satisy the well-separated limit. This fact means that the construction of the higher dimensional multi-instantons is
easy. Therefore one of the futerworks is finding the suitable multi-instantons ADHM data in higher dimesions.

In the latter part of this paper, we discussed closed connection between the instantons and the Skyrmions in the higher d
sions. The Skyrmions in four dimensions are solutions to the (static) Skyrme model, thus we need the higher dimensional Sk
model to consider the higher dimensional Skyrmions. Following the formalism developed byt8utalcation method, we
have shown that the static Skyrme model can be derived from the generalized Yang-Mills maddlrimedsions. This higher
dimensional Skyrme model satisfy the Derrick’s theorem, thus we expext stable soliton solutions in this model and call these
lutions as the higher dimensional Skyrmions. In particular, we have considered the eight dimensional Skyrme model and st
that the lower bound of this action is the topological charge which is the generalization of the Baryon number. Furthermr
we have introduced the higher dimensional spherically symmetric ansatz, namely the higher dimensional hedgehog ansat
presented the explicit numerical solution for the Skyrmion associated with the topological charge one. The profie function
the energy density of the eight-dimensional single Skyrmion look quite similar to those in four dimensions. In four dimensio
it is known that the Atiyah-Manton construction lead the good approximate profile function of Skyrmions from the instantol
Following the four-dimensional case, we constructed the Atiyah-Manton solution for the Skyrmin from the eight-dimensiol
one instanton solution. We then compare the above numerical solution and the Atiyah-Manton solution and find that the
a good agreement between them. This result means that the Atiyah-Manton construction works well in eight dimensions,
dictates us that the correspondence the instantons and the Skyrmions by the Atiyah-Manton construction is an universal pre
in higher dimensions.
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