博士論文

Multidrug and Toxin Extrusion (MATE) に起因する 薬物間相互作用リスクの in vitro 評価法に関する

妥当性評価

2024 年度 前期

齋藤 麻美

目次

目次 ·	2
略語 •	
序論 •	
第1章	ヒト hMATE1 試験系の輸送方向の相違が阻害薬の阻害強度評価に与える影響
に関する権	食 討
第1節	緒言・・・・・・・・・・・・・・・・・・・・・・・・ 8
第2節	Efflux 阻害試験方法の構築・・・・・・・・・・・・・・・・・・・ 9
第3節	Uptake 阻害試験および efflux 阻害試験で算出された IC ₅₀ 値の比較・・・ 12
第4節	In vitro-in vivo correlation (IVIVC)の検証・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
第5節	考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 19
第2章 、	マウス mMatel 試験系の輸送方向の相違が基質認識性の評価に与える影響に関
する検討	
第1節	緒言・・・・・・・・・・・・・・・・・・・・・・・ 23
第2節	In vitro uptake 試験・・・・・・・・・・・・・・・・・・ 25
第3節	mMatel ノックアウトマウスを用いた in vivo efflux 試験・・・・・・ 27
第4節	In vitro-in vivo correlation (IVIVC)の検証・・・・・・・・・・ 32
第5節	マウス-ヒト間の種差の考察・・・・・・・・・・・・・・・・・ 33
第6節	考察・・・・・・・・・・・・・・・・・・・・・・・・ 35
結論 •	39
謝辞 •	41
実験方法	
引用文献	

略語

AUC	area under the concentration-time curve
BCECF-AM	2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymetyl
СНО	Chinese hamster ovary
C_{kidney}	concentration in the kidney at 120 min
C _{max,u}	maximum unbound concentration
$CL_{R,kidney}$	secretory clearance with respect to concentration in the kidney
$CL_{R,plasma}$	renal clearance with respect to the plasma concentration
CL _{tot}	total body clearance
C _{p,ave}	the mean value of plasma concentrations at 90 and 120 min
CR	clearance ratio
DDI	drug-drug interaction
DMEM	Dulbecco's modified Eagle medium
DPP-4	dipeptidyl peptidase-4
EMA	European Medicines Agency
FDA	US Food and Drug Administration
$\mathbf{f}_{\mathbf{p}}$	fraction unbound in plasma
Furine	fractional urinary ratio
GFR	glomerular filtration rate
HEK	human embryonic kidney
HEK293	human embryonic kidney 293
IC ₅₀	half-inhibitory concentrations
IVIVC	in vitro-in vivo correlation
KO	knockout
$K_{p,kidney}$	apparent kidney-to-plasma concentration ratio
LC-MS/MS	liquid chromatography-tandem mass spectrometry
MATE	multidrug and toxin extrusion
MDCK	Madin-Darby canine kidney
MHLW	Ministry of Health, Labor and Welfare
\mathbf{MPP}^{+}	1-methyl-4-phenylpyridinium
NH ₄ Cl	ammonium chloride
OAT	organic anion transporter
OCT	organic cation transporter
PET	positron emission tomography
PYR	pyrimethamine

URuptake ratioVurine,aveurinary excretion rate from 90 to 120 minWTwild type

序論

薬物間相互作用とは、ある薬物の効果/副作用が、同時期に併用される別の薬物によって増強/減弱する現象である。特に、薬物の血中・組織中濃度の変動が起きる薬物動態 学的相互作用は、代謝酵素やトランスポーター等の薬物動態の制御に関わる分子の基質 認識性が薬効群を超えて極めて広範であることから、多様な薬物の組み合わせによる相 互作用が臨床上見られると共に、薬物の薬理学的特性から相互作用リスクを予見しづら い特徴がある。したがって、薬物療法の有効性・安全性を確保するためには、薬物間相 互作用の分子機序を理解した上で、定量的な相互作用リスクを予測し、臨床における適 切な処方設計を立案することが求められる。

腎臓は、肝臓と並び薬物排泄を担う主要な器官の一つである。2010年の売り上げ Top200 医薬品のうち 32%は未変化体として尿中に排泄されることが報告されている

(Morrissey et al., 2013)。さらに, 肝臓など別の臓器で生成した代謝物が最終的には尿 中に排泄される場合も併せて考慮すると腎臓の果たす役割は大きい。腎臓を介した薬物 のクリアランスは, 糸球体濾過に加え, 尿細管上皮細胞に発現する多様なトランスポー ターを介した能動的な分泌や再吸収によって決定される。糸球体濾過は, 血漿タンパク 質に非結合形の薬物のみを尿へと排泄する。一方, 尿細管上皮細胞では, OAT (organic anion transporter; 有機アニオントランスポーター), OCT (organic cation transporter; 有機 カチオントランスポーター), MATE (multidrug and toxin extrusion; 多剤排出トランスポ ーター) ファミリーに属する複数種のトランスポーターが, 血管側から基質薬物を取り 込み, 尿細管側へ分泌する役割を果たしている。

Figure 1Uptake and efflux transporters in kidney proximal tubules.Figure from Hillgren et al. (2013)

これら腎トランスポーター群の輸送能が,遺伝的素因や併用薬物の影響により低下 する時,基質薬物の尿排泄が低下し,血中濃度が上昇し,副作用の発現リスクが増加す る臨床事例が知られている。したがって,薬物間相互作用における腎トランスポーター の役割を理解することは,薬物療法の最適化や副作用の回避に不可欠である。それ故, 現在製薬会社では,薬物相互作用に関するレギュラトリーガイドラインに従い,全ての 開発化合物について,薬物動態学的相互作用の可能性を機序別に定量的に評価し,医薬 品添付文章等で適切に医療関係者に情報提供しなければならないとされている。

MATE ファミリートランスポーターは, Na⁺や H⁺の細胞内外の濃度勾配を利用して 様々な基質化合物を細胞内から細胞外へと排泄する。ヒトでは、hMATE1 (SLC47A1) が 2005 年に同定され、肝臓の胆管側膜と腎臓の近位尿細管上皮細胞の頂端膜側に局在 し、H⁺との対向輸送で様々な基質化合物を輸送することが知られている。hMATE1 は主 に有機カチオン類を輸送するが,他にもセフェム系抗生物質(cephalexin 等)のような 両性イオンや, estrone-3-sulfate といったアニオン性化合物などを幅広く基質として認識 する。臨床では,hMATE1 が糖尿病治療薬 metformin やプラチナ系抗がん剤 cisplatin 等 の尿細管分泌に関与し、その機能変動が副作用発現を変動させる可能性が報告されてい る。hMATE1の in vitro 機能評価には、HEK293 細胞、CHO 細胞、MDCK 細胞等の不死 化細胞株に hMATE1 遺伝子を発現させた強制発現系やそれらの細胞膜ベシクルが用い られてきた。hMATE1 による基質の排泄輸送を観察するには,基質をまず細胞内に preload する必要があり,実験技術的に困難な点が課題である。一方で,hMATE1 による 輸送は輸送駆動力の勾配の向きに対応して双方向性を示すことから, 生理的条件とは逆 向きの H⁺勾配(細胞外<細胞内)を人工的に作り出し, 基質の細胞内への取り込みを 観察する実験系も報告されている。本実験系は細胞外に基質を加えるのみで簡便であり, スクリーニングに適していると考えられる。実際、レギュラトリーガイドラインに記載 されている hMATE1 を介した相互作用リスクの評価においても、取り込み試験系の活 用が例示されている。しかしながら, 生理的な hMATE1 の排泄方向の輸送とは逆向き の輸送方向で評価した基質の輸送能力や阻害強度が、生理的な hMATE1 の輸送機能を 反映しているかについては、これまで系統的な妥当性の評価がされてこなかった。

そこで、本研究では hMATE1 を介した薬物間相互作用リスクを取り込み方向で評価 することの妥当性を、①阻害薬のトランスポーター阻害強度、②基質認識性および輸送 能力の2つの側面から複数の化合物を用いて検証した。

以下,得られた結果を2章にわたり論述する。

第1章

ヒト hMATE1 試験系の輸送方向の相違が

阻害薬の阻害強度評価に与える影響に関する検討

第1節 緒言

ヒト腎臓の近位尿細管上皮細胞の頂端膜には、hMATE1(SLC47A1)と hMATE2-K (SLC47A2)が発現し、H⁺との対向輸送により、基質化合物を尿細管腔側へ分泌する (Yonezawa and Inui, 2011a; Motohashi and Inui, 2013) MPP⁺ (1-methyl-4-phenylpyridinium) と metformin は典型的な基質であり,他にもこれまでの先行研究により, creatinine など の内因性代謝物を含む様々な化合物が hMATE1 および hMATE2-K の基質として特定さ れている(Terada and Inui, 2008)。hMATE1 と hMATE2-K の基質認識性は重複すること が知られている一方で, hMATE2-K のヒト腎皮質でのタンパク質発現量は定量下限以下 であるという報告もあることから,hMATE1 が腎臓での主要な MATE アイソフォーム であると考えられる(Prasad et al., 2016)。hMATE1 が介在する薬物間相互作用では, hMATE1の基質である薬物の腎臓からの排泄遅延により(Ivanyuk et al., 2017),これま でにいくつかの臨床事例が報告されているように、その血中動態(Tsuda et al., 2009; Kusuhara et al., 2011; Ito et al., 2012) や, 腎毒性 (Yonezawa and Inui, 2011b; Li et al., 2013), 薬理効果(Becker et al., 2009; Stocker et al., 2013)に変化を引き起こす可能性がある。腎 機能のバイオマーカーとして頻繁に使用される血清 creatinine 値が hMATE1 による尿細 管分泌を阻害することにより,可逆的に増加するとの報告 (Chu et al., 2016; Nakada et al., 2019)等,hMATE1の薬物間相互作用における重要性の認知度の高まりから,規制当局 は近年, 薬物相互作用研究のガイドラインを改訂し, 製薬会社はすべての新規医薬品候 補化合物について,hMATE1 に対する阻害を定量的に評価することが義務付けられた

(US Food and Drug Administration (FDA), 2019;, Ministry of Health, Labor and Welfare (MHLW), 2018;, European Medicines Agency (EMA), 2012)_o

開発化合物のhMATE1 阻害強度評価には,hMATE1 を強制発現させた細胞へのin vitro 典型的基質の取り込み阻害を評価する方法が最も簡便で一般的に用いられている。この 方法は, in vitro の取り込み方向への輸送に対する阻害強度が生理的な hMATE1 の排泄 方向への輸送に対する阻害強度と同一であると仮定し行われているものである。これま でに, H⁺による hMATE1 の阻害強度が輸送の方向性に依存せず同じであることは示さ れているが (Dangprapai and Wright, 2011), H⁺以外の化合物でも輸送の方向に依存せず 阻害薬の強度が同一であるのかの検証はされてこなかった。

そこで本章では、hMATE1 の阻害薬の阻害強度を定量的に評価するための手法として、新たに排泄方向の基質輸送に対する hMATE1 阻害薬の阻害定数(IC50)の算出法を開発すると共に、その手法を用いて 12 種類の既知の hMATE1 阻害薬の IC50 値が、取り

込み方向と排泄方向で異なるかについて検証した。

Figure 2 Uptake inhibition and efflux inhibition methods

第2節 Efflux 阻害試験法の構築

hMATE1 による輸送は駆動力である H⁺の勾配に依存して双方向性を示すことから, Dangprapai らの先行研究を参考に, NH4Cl を含む buffer の添加のタイミングを変化させ ることで,細胞内外の H⁺勾配を人工的に操作し,基質の輸送の方向性をコントロール することとした。蛍光標識された細胞内 pH 指示薬の BCECF-AM を pH 7.4 の条件下 30 分間 hMATE1 発現 HEK293 細胞に preload し,濃度の異なる NH4Cl を含む efflux solution に置換したところ,すべての NH4Cl 濃度条件で細胞内 pH は 8.0 付近のアルカリ性へ傾 いた (Figure 3A)。pH8.0 以上の正確な pH については,用いた BCECF-AM の検量線の 範囲外となり,決定することはできなかった (Figure 3B)。20 mM NH4Cl 群では,細胞 内 pH のアルカリ化は 10 分程度持続され,その後徐々に元の pH に戻った。NH4Cl を含 まない buffer に再置換すると NH4Cl 濃度依存的に細胞内 pH は減少した。20 mM NH4Cl 群では,細胞内の pH は 6.5 で数分間維持されており,uptake 阻害試験で用いられるイ ンキュベーション時間が 1 分であることを考慮すると,十分に細胞内の酸性化が保たれ ている時間であることが確かめられた。

Figure 3 (A) The effect of various concentration of NH₄Cl on intracellular pH in hMATE1expressing HEK293 cells. (B) Correlation between intracellular pH and ratio of fluorescence intensity of BCECF at 488 and 460 nm. Intracellular pH was calibrated using standardized pH buffers (pH 6.0 – 8.0, closed circle) containing 10 μ M nigericin. Data from pH 8.2 and 8.5 buffers (open circle) was not included due to a limitation of the method. Each point represents the mean value ± S.D. (n = 3).

本研究に用いる基質には、hMATE1の in vitro 研究で最も使用されている典型的基質である MPP⁺と実臨床で用いられる hMATE1 基質でもある metformin を選択した。これら2つの基質について、uptake 試験においては、用いる基質の違いによって IC₅₀の差は認められないことは先行研究で示されている(Lechner et al., 2016; Martínez-Guerrero et al., 2016)。これら2つの基質を用い、hMATE1 依存的 efflux の時間依存性、濃度依存性を評価した。Figure 4 に hMATE1 発現細胞と対照細胞における MPP⁺と metformin の時間依存的細胞内基質濃度の推移を示す。基質を10分間 preload 後、20 mM の NH4Cl を含む efflux solution に置換することで efflux を開始させ、細胞内に残存する基質量を測定した。細胞内総基質濃度の算出は、Gillen and Forbush(1999)の報告に従い、1 mg タンパク質あたりの HEK 293 細胞の細胞容積を 6.5 µL として決定した。Efflux 開始時の細胞内濃度を100%とし、インキュベーション時間に応じた細胞内濃度の減少をプロッ

トした。細胞内基質の減少は対照細胞では観察されず、hMATE1 発現細胞でのみ観察された。細胞内からの基質の流出は速く、細胞内基質の減少が片対数グラフにおいて直線 となるインキュベーション時間を設定することは困難であった。この現象は特に、MPP⁺ を基質に用いた場合に顕著であった。予備検討において、その後の IC₅₀ 値算出のための 最短のインキュベーション時間の検討を行ったが、MPP⁺または metformin の変化量に対 して、実験的なバラつきの影響が無視できず、0.25 分未満のインキュベーション時間で IC₅₀ 値を決定することは現実的ではなかった。したがって、両方のプローブ基質に対す るさらなる efflux 試験においては、最小限実行可能なインキュベーション時間として 0.25 分を設定した。

Figure 4 Time profiles of intracellular $[^{3}H]MPP^{+}$ (A) and $[^{3}H]metformin$ (B) in hMATE1expressing HEK293 cells. After preloading $[^{3}H]MPP^{+}$ (0.01 mM) and $[^{3}H]metformin$ (0.1 mM) for 10 minutes, efflux was initiated in 20 mM NH₄Cl buffer at pH 7.4, and the remaining concentrations of substrates in the cells were measured. Each point represents the mean value \pm S.D. (n = 3).

次に、今回構築した efflux 試験系のバリデーションの一環として、基質濃度依存的な efflux の飽和を検証した (Figure 5)。hMATE1 発現 HEK293 細胞における MPP⁺と metformin の efflux クリアランスは、細胞内総基質濃度の増加に伴って減少し、見かけ の Km 値は MPP⁺では 10-100 µM, metformin では 100-1000 µM であった。これらの値は 当研究室の Lechner が uptake 試験で算出した Km 値と矛盾しない値であった (47.6 µM for MPP⁺ および 208 µM for metformin)。Efflux 阻害試験時の NH4Cl を含む efflux solution への置換直後の hMATE1 発現 HEK293 細胞内の基質濃度が、uptake 阻害試験時に用い る基質薬液濃度と同等 (1 µM for MPP⁺および 10 µM for metformin) となるよう、efflux 阻害試験時に用いる基質の preload 薬液の濃度を 0.05 µM (MPP⁺) および 0.75 µM (metformin) に設定した。

Figure 5 Concentration-dependent efflux of [³H]MPP⁺ (A) and [³H]metformin (B).

Efflux of [³H]MPP⁺ (nominal concentrations: 0.05, 0.5, 5, 15 μ M) and [³H]metformin (nominal concentrations: 0.75, 7.5, 37.5, 75 μ M) were determined in hMATE1-expressing HEK 293 cells (closed circles) and Mock-HEK293 cells (closed squares) for 0.25 min. Intracellular concentrations of substrates were determined by assuming that the cellular volume per milligram protein as 6.5 μ L [Gillen et al., 1999]. Each point represents the mean value ± S.D. (n = 3).

第3節 Uptake 阻害試験および efflux 阻害試験で算出された IC50 値の比較

当研究所の Lechner が既に報告した pyrimethamine, cimetidine, trimethoprim, quinidine, ondansetron, famotidine の IC₅₀ 値に加え, metformin との間で臨床薬物間相互作用を引き 起こすことが報告されている dolutegravir, vandetanib, cephalexin, ranolazine, lansoprazole と cobicistat について, MPP⁺および metformin をプローブ基質とした IC₅₀ 値を uptake 阻 害試験により追加取得した (Figure 6, 7 and Table 1)。

Figure 6Inhibitory effects of various compounds on the uptake of [³H]MPP+.Uptake of [³H]MPP+ (1 μM, 1 min) was determined in the absence and presence of indicated inhibitors

at pH 7.4 in 20 mM NH₄Cl pre-pulse condition. Each point represents the mean value \pm S.E. (n = 3).

Figure 7 Inhibitory effects of various compounds on the uptake of [¹⁴C]metformin. Uptake of [¹⁴C]metformin (10 μ M, 1 min) was determined in the absence and presence of indicated inhibitors at pH 7.4 in 20 mM NH₄Cl pre-pulse condition. Each point represents the mean value ± S.E. (n = 3).

Efflux 阻害試験においては, 12 化合物について MPP⁺および metformin をプローブ基 質とした IC₅₀ 値を取得した (Figure 8, 9 and Table 1)。Uptake 阻害試験, efflux 阻害試験 のどちらの試験の IC₅₀ 値も細胞外に添加する buffer に加えた阻害薬濃度を基準として 算出した。

Figure 8 Inhibitory effects of various compounds on the efflux of $[^{3}H]MPP^{+}$. Efflux of $[^{3}H]MPP^{+}$ was determined in the absence and presence of indicated inhibitors in 20 mM NH₄Cl buffer at pH 7.4 for 0.25 minutes. Each point represents the mean value \pm S.E. (n = 3).

Figure 9 Inhibitory effects of various compounds on the efflux of [³H]metformin. Efflux of [³H]metformin was determined in the absence and presence of indicated inhibitors in 20 mM NH₄Cl buffer at pH 7.4 for 0.25 minutes. Each point represents the mean value \pm S.E. (n = 3).

Table 1 IC ₅₀ values from uptake / efflux direct

 IC_{50} values were estimated by nonlinear regression analysis and are given as means \pm S.D (n=3) from one experiment.

Inhibitor	IC ₅₀ (µM), MATE1					
	MP	\mathbf{P}^+	Metfor	min		
	Uptake Efflux		Uptake	Efflux		
Pyrimethamine*	0.492 ± 0.039	1.19 ± 0.061	0.313 ± 0.052	0.502 ± 0.058		
Cimetidine*	4.43 ± 0.05	43.8 ± 0.13	2.56 ± 0.04	6.12 ± 0.077		
Trimethoprim*	8.16 ± 0.06	84.5 ± 0.087	4.13 ± 0.09	11.3 ± 0.13		
Quinidine*	6.77 ± 0.08	15.5 ± 0.094	5.82 ± 0.06	5.00 ± 0.12		
Ondansetron*	0.797 ± 0.025	0.935 ± 0.15	0.436 ± 0.083	0.624 ± 0.19		
Famotidine*	1.67 ± 0.03	10.7 ± 0.12	0.905 ± 0.046	3.11 ± 0.12		
Dolutegravir	7.12 ± 0.085	23.8 ± 0.23	3.04 ± 0.086	9.07 ± 0.30		
Vandetanib	3.36 ± 0.063	3.52 ± 0.17	2.39 ± 0.034	1.60 ± 0.13		
Cephalexin	2614 ± 0.024	>10,000	2110 ± 0.043	>10,000		
Ranolazine	88.1 ± 0.043	111 ± 0.092	48.7 ± 0.061	66.3 ± 0.31		
Lansoprazole	60.1 ± 0.049	148 ± 0.22	44.0 ± 0.056	66.5 ± 0.24		
Cobicistat	5.29 ± 0.087	12.2 ± 0.11	2.75 ± 0.083	5.27 ± 0.23		

* IC₅₀ values obtained by uptake assay were from Lechner et al. (2016).

MPP⁺を基質として用いた場合,評価した 12 の阻害薬のうち,8 つの阻害薬において は、uptake 阻害試験,efflux 試験どちらの輸送の方向性で評価された IC₅₀ 値も4 倍以内 の差であった。Cimetidine, trimethoprim, famotidine, cephalexin では、efflux 阻害試験で得 られた IC₅₀ 値が uptake 阻害試験で得られる IC₅₀ 値より大きく,その差はそれぞれ 9.9 倍、10 倍、6.4 倍、3.8 倍であった。Metformin を基質として用いた場合、非常に弱い阻 害を示した cephalexin を除くすべての阻害薬の IC₅₀ 値は uptake 阻害試験と efflux 阻害試 験で4 倍以内であった(Figure 10A and Table 1)。Uptake 阻害試験では 12 の阻害薬すべ てで MPP⁺を基質とした場合と metformin を基質とした場合で、2.3 倍未満の同等の IC₅₀ 値となり、先行研究で示されていた通り、この2 つの基質間での基質依存的な IC₅₀ 値の 差は認められなかった。一方で、efflux 阻害試験では、12 阻害薬中 10 の阻害薬で 4 倍 以内の差であったものの、MPP⁺を基質に用いた場合の IC₅₀ 値が大きくなる傾向が認め られた(Figure 10B and Table 1)。

Figure 10 Comparison of IC₅₀ values from the uptake and efflux direction using MPP⁺ and metformin as probe substrates.

 IC_{50} values were determined by nonlinear regression analysis and compared between different transport directions [uptake and efflux (A)] and different substrates [MPP⁺ and metformin (B)]. IC_{50} values of cephalexin in the efflux direction were not plotted because there was no observed inhibition at the highest concentration (10 mM). The black line represents the line of unity, and the dotted lines represent 4-fold errors.

第4節 In vitro-in vivo correlation (IVIVC)の検証

次に、規制当局が薬物相互作用ガイドライン中で hMATE1 の阻害リスクを評価する 方法として推奨している血漿中蛋白非結合形濃度の最大値と IC₅₀ 値の比 (C_{max,u}/IC₅₀)を 指標として用い、臨床での metformin の AUC が 25%以上の上昇を併用による相互作用 有とし、最も保守的なカットオフ値 0.02 との関係を考察した。hMATE1 介在の臨床相 互作用のリスク判定は、metformin を基質として用いて取得した取り込み方向と排泄方 向の IC₅₀ の違いによって変化は認められなかった。また、famotidine を除き、すべての 阻害薬について、metformin の AUC 上昇リスクを正しく予測した (Table 2 and Figure 11)。

Inhibitor	dose	C _{max} ,u	Metformin AUC	C _{max} ,u/IC	50, Metfromin	references
minoitor	(mg)	(µM)	change (%)	Uptake	Efflux	Telefences
						,
Pyrimethamine	10 mg	0.0507	2	0.16	0.10	Miyake (2021)
Pyrimethamine	25 mg	0.138	30	0.44	0.27	Miyake (2021)
Pyrimethamine	50 mg	0.298	35	0.95	0.59	Kusuhara (2011)
Pyrimethamine	75 mg	0.410	76	1.3	0.82	Miyake (2021)
Cimetidine	400 mg	8.21	46	3.2	1.3	Somogi (1987)
Cimetidine	400 mg	4.43	51	1.7	0.72	Wiebe (2020)
Trimethoprim	200 mg	8.88	30	2.2	0.79	Muller (2015)
Ondansetron	8 mg	0.0471	21	0.11	0.080	Li (2016)
Famotidine	200 mg	1.00	2.7	1.1	0.32	Hibma (2016)
Dolutegravir	50 mg q24h	0.100	79	0.033	0.011	Song (2016)
Dolutegravir	50 mg q12h	0.179	145	0.059	0.020	Song (2016)
Vandetanib	800 mg	0.102	73	0.043	0.064	Johansson (2014)
Ranolazine	500 mg	1.05	39	0.022	0.016	Zach (2015)
Ranolazine	1000 mg	1.85	83	0.038	0.028	Zach (2015)
Lansoprazole	30 mg	0.088	12	0.0020	0.0013	Ding (2014)

Table 2 DDI risk assessment based on IC_{50} values from uptake/efflux directions and plasma unbound C_{max} .

Figure 11 DDI risk assessment based on IC₅₀ values from uptake/efflux directions and plasma unbound C_{max}.

第5節 考察

これまで、一般的に使用されている hMATE1 に対する阻害強度評価方法は、hMATE1 発現細胞へのプローブ基質の取り込み方向の輸送に対し、細胞外に添加した阻害薬の阻 害効果を検討する方法であった。しかしながら、この実験系は、生理学的な hMATE1 の 排泄方向への輸送の方向性に依存せず阻害薬の IC₅₀ 値が同一であると仮定して行われ てきたものであるため、本研究では、規制当局のガイドラインに基づく薬物相互作用リ スク判定が、輸送の方向によって異なるのかを明らかにするため、様々な hMATE1 阻 害薬の IC₅₀ 値を取り込み方向と排泄方向の両方向で算出した。排泄方向での IC₅₀ 値算 出法として、今回我々は新たに 2 つの典型的 hMATE1 基質(MPP⁺および metformin)を preload し、細胞内からの efflux を評価する efflux 阻害試験法を開発した。当初は細胞内 から排泄された基質の efflux solution 中の量を評価することを目指したが、preload 薬液 の持ち越しや、preload 薬液を wash する過程で漏れ出てくる量が無視できないことから、 efflux クリアランスは細胞内に残存する基質の時間一濃度プロファイルに基づいて決定 した(Figure 4)。

細胞内に残存する基質の時間依存的な減少は、少なくとも2つの速度定数(速いフェ ーズともうひとつは非常に遅いフェーズの存在を示唆)を示し、この現象は MPP⁺で特 に顕著であった。MPP⁺などの有機カチオンは、エンドソーム等の細胞内の酸性コンパ ートメントにも分布し (Martínez-Guerrero et al., 2016)、この現象はエンドソームトラッ ピングと呼ばれる。Martinez-Guerrero によれば、エンドソームからの基質の放出は遅く、 hMATE1-CHO 細胞からの MPP⁺の初期排泄の速度定数は、V型 H⁺-ATPase 阻害剤の添加 によるエンドソームトラッピングの破壊に関係なく変化しなかった。したがって、速い フェーズが細胞の浅いコンパートメントからの細胞膜を介する排泄を表すと仮定し、さ らなる efflux 阻害試験の最小の実行可能なインキュベーション時間を 0.25 分と設定し た。

本研究では、hMATE1 基質(MPP⁺および metformin)の IC₅₀ 値の輸送の方向性および 基質依存性について、uptake 阻害試験と efflux 試験で得られた IC₅₀ 値を比較し (Figure 10A)、MPP⁺と metformin 間で IC₅₀ 値の基質依存性を比較した (Figure 10B)。排泄方向 の評価で MPP⁺と metformin が基質依存的に異なる IC₅₀ 値を示すメカニズムはまだ完全 には理解されていない。この研究において、efflux 阻害試験は慎重に設計し実施可能な 最小のインキュベーション時間として 0.25 分を設定したものの、細胞外へ添加した阻 害薬が細胞内から hMATE1 と相互作用する可能性、または細胞内結合またはエンドソ ームトラッピングを阻害する可能性を完全に排除することはできない。取り込み方向と 排泄方向で 4 倍以上の IC₅₀ 値の差を示した cimetidine, tripmethoprim, famotidine, cephalexin の血漿中非結合形分率はそれぞれ 86%、60%、81%、86%と他の阻害薬より 比較的高く、また cimetidine, trimethoprim, cephalexin については、hMATE1 の阻害薬で あると同時に基質であることも報告されている(Ito et al., 2010; Kito et al., 2019; Tanihara et al., 2007)。Efflux クリアランスは細胞内の全 MPP+濃度として計算されるため, この パラメータは理論的には固有の排泄クリアランスと細胞内非結合形分率から成る。 hMATE1 の排泄方向への輸送を促進する H⁺勾配(細胞外<細胞内)条件下においても, これらの阻害薬が濃度勾配に依存した受動拡散に加えて hMATE1 によって細胞内に取 り込まれ,非結合形として多く存在することで, hMATE1 の阻害に加え, MPP⁺の細胞内 結合やエンドソームトラッピングに影響を与え, 細胞内の非結合形 MPP⁺濃度を変化さ せる可能性が考えられた。この事実は, 非極性細胞をホスト細胞として接着培養で評価 する限り, 細胞外からの阻害と細胞内からの阻害を完全に分離して評価することの困難 さを示している。しかしながら, 創薬開発においては, 患者に対するリスクを軽減する ために薬物間相互作用を評価する際には, 保守的なアプローチを好む観点から, in vitro プローブ基質として metformin を使用した取り込み方向での阻害強度評価が, hMATE1 の阻害薬としての開発化合物の IC₅₀ 値を決定するための妥当な条件であると考えられ た。

今回我々は, metformin を基質として用いた阻害試験で得られた IC₅₀ 値に基づく hMATE1 介在の臨床薬物間相互作用リスク判定に取り込み方向と排泄方向で変化が無 かったことを示した。また、famotidine を除き、最新の規制当局のガイドラインのカッ トオフ式(C_{maxu}/IC₅₀>0.02)に基づいたリスク判定においてはすべての阻害薬について metformin の AUC 上昇リスクを正しく予測した。Famotidine の Cmax,u/IC 50 値は、取り込 み方向で 1.1, 排泄方向で 0.32 であり, これらはどちらも規制カットオフの 0.02 を上回 るにもかかわらず, famotidine はむしろ metformin の腎クリアランスを増加させること が報告されている。これらは, famotidine が hMATE1 阻害以外にも, 例えば尿 pH を変 化させ, metformin の再吸収を阻害することが原因であると考えられた(Hibma et al., 2016)。Pyrimethamine 10 mg 投与時の C_{max.u}/IC₅₀ 値は, 取り込み方向で 0.16, 排泄方向で 0.10 であるにもかかわらず, metformin の AUC 上昇が認められていない。しかし, 腎ク リアランスにおいては、pyrimethamine 10 mg の効果が認められ、半減期も遅延すること が知られている(Miyake et al., 2021)。被相互作用薬(victim drug)における hMATE1の 機能変動の影響を血漿中の濃度推移変化のみで評価することの限界については, 第2章 で引き続き考察する。阻害薬の血漿中の非結合形濃度を,本来 hMATE1 との作用部位 である近位尿細管中または腎臓内濃度の非結合形濃度のサロゲートとして使用するこ とは、相互作用薬 (perpetrator drug) としてのリスク評価において、機能しているよう に思われる。例えば, metformin 腎クリアランスへの pyrimethamine の効果の定量解析で は、pyrimethamineの血漿中濃度で定義される見かけの in vivo IC₅₀値を算出可能であり、 対応する in vitro IC₅₀値と比較することができる(Miyake et al., 2021)。しかしながら, より正確な予測のためには(特にトランスポーターが関与して,腎臓近位尿細管上皮細 胞内に阻害薬を積極的に濃縮したり、除去する場合など)、腎臓でのhMATE1阻害薬の 臨床的に意義のある非結合形濃度を推定することは、依然として課題である。

MPP⁺と metformin の efflux クリアランスは uptake 試験と同じ 20 mM NH₄Cl を用いて いるにもかかわらず, 取り込みクリアランスに比べて 4 倍から 6.5 倍小さかった (MPP+: 20 vs 130 μL/min/mg protein, metformin : 14 vs 55 μL/min/mg protein)。 Efflux クリアラン スは、細胞内の総基質濃度に基づいて算出されるため、異なる非結合形の細胞内濃度が この不一致の原因である可能性がある。さらに、細胞の外部と内部の H⁺濃度の差が根 本的なメカニズムのひとつであると推測する。20 mM の NH₄Cl を含む efflux solution に 置換すると、初期の細胞内 pH が 7.0 だった場合、細胞内 pH は 8.0 に上昇するという予 備検討実験(data not shown)を考慮すると、初期の細胞内 pH が 7.4 だった efflux 試験 での細胞内 pH は約 8.4 と推定されるが、今回用いた細胞内 pH 指示薬の検量線の限界 により 8.0 以上の pH は測定できなかった。理論的には, efflux 阻害試験の場合, efflux solution (pH=7.4)のH⁺濃度は40 nMであり、細胞内では4-10 nM(細胞内 pH が 8.0-8.4 と仮定) である。一方, uptake 阻害試験の H⁺濃度は細胞内が 400 nM (pH6.4), 細胞外 へ添加する buffer(pH7.4)中で 40 nM である。両アッセイでの細胞外と細胞内の H⁺濃 度の絶対値はほぼ 10 倍異なる。これは uptake と efflux の初期速度の持続時間に影響を 与え,現在の条件下での efflux クリアランスの過小評価を引き起こした可能性が考えら れる。

本研究では、取り込み方向と排泄方向の両方で 12 の hMATE1 阻害薬の IC₅₀ 値を比較 し、生理学的な hMATE1 の輸送の方向性とは逆向きの uptake 阻害試験から得られる IC₅₀ 値は、metformin を in vitro プローブ基質として使用する限り、efflux 阻害試験から得ら れた IC₅₀ 値と同等の IC₅₀ 値を示すこと、さらに、算出した IC₅₀ 値は最新の規制当局のガ イドラインに従った $C_{max,u}/IC_{50} > 0.02$ のカットオフアプローチで、hMATE1 に起因する metfromin の臨床的な薬物間相互作用による AUC 上昇のリスクを正しく判定すること を確かめた。より生理学的に関連性のある IC₅₀ 値の算出のためには、細胞外からの阻害、 細胞内からの阻害を別々に評価することが可能な新たな in vitro 評価系の開発が望まれ る。しかしながら、新規医薬品開発においては、患者に対するリスクを軽減するために false-negative を避けなければならない点を考慮すると、metformin を基質として用いる 取り込み方向での阻害試験は、hMATE1 の阻害薬としての新規開発化合物の IC₅₀ 値を決 定するため適切な条件であると考えられた。

第2章

マウス mMatel 試験系の輸送方向の相違が

基質認識性の評価に与える影響に関する検討

第1節 緒言

腎クリアランスは糸球体濾過に加え, 近位尿細管細胞に発現する多様なトランスポー ターを介した能動的な分泌や再吸収で構成される。分泌クリアランスは、再吸収がない と仮定すると, 腎クリアランスから糸球体濾過率(Glomerular filtration ratio: GFR)と血 漿中非結合形分率(f_b)の積を引くことで推定できる。クリアランス比(Clearance ratio: CR)は、腎クリアランスを f_nと GFR の積で除することで定義され、CR が1より大き い場合, 尿排泄への能動的な分泌の関与を示唆している。 腎臓近位尿細管上皮細胞の頂 端膜に発現し H⁺との対向輸送で様々な異物を基質として分泌する hMATE1 および hMATE2-K に起因する薬物間相互作用では、第1 章で述べた通り, metformin 等の hMATE1/2-K 基質に対して hMATE1/2-K 阻害薬が併用されることで, 基質薬物の腎クリ アランスが減少する。体内からの薬物の消失が遅延し、血漿中および組織中の薬物濃度 が高まると, 薬効や毒性に変化があるため, 創薬開発においては, 相互作用薬 (perpetrator drug)としてのリスク評価に加え、被相互作用薬(victim drug)としてのリスク評価も 重要である。規制当局からの最新の薬物相互作用ガイドラインでは、開発化合物の腎分 泌のクリアランスが全クリアランスの 25%を超える場合と, 腎障害の懸念がある場合に は、新規開発化合物が腎トランスポーターの基質であることを評価することが求められ る。一般的に,開発化合物が hMATE1 および hMATE2-K の基質になることの in vitro 評 価にも人工的な逆向きの H⁺勾配下,すなわち生理学的な輸送の方向とは逆向きの取り 込み方向での評価が用いられてきた。しかしながら,基質認識性が輸送の方向性の違い によって同一であるかどうかの体系的な検討は行われていない。

さらに、hMATE1/2-K の介在する腎分泌の in vitro-in vivo correlation (IVIVC) 評価に も懸念がある。Extended clearance concept (Yoshida et al., 2013; Varma et al., 2015) に基づ くと、腎分泌クリアランスは本来であれば、腎臓内の薬物濃度に基づいた腎分泌固有ク リアランス (CL_{R,kidney}) で定義され、通常の臨床試験で得られる血漿中濃度に基づいた 腎クリアランス (CL_{R,plasma}) ではない。hMATE1/2-K 活性はこの CL_{R,kidney} と関連する可 能性がある。しかし、ヒト臨床試験では薬物の腎臓内濃度を求めることは困難である。 さらに、遺伝薬理学または臨床薬物学的相互作用研究において、腎分泌における hMATE1/2-K の関与を明らかにした情報は metformin (Nies et al., 2016), N-methyl nicotinamide (Ito et al., 2012),および gefapixant (Nussbaum et al., 2022) 等に限られる。 したがって、本研究では、hMATE1 のオルソログであるマウス mMate1 に着目した。マ ウスには mMate1 と mMate2 の 2 つのアイソフォームがあるが、近位尿細管の頂端膜に 発現するのは mMate1 のみである (Otsuka et al., 2005)。また、mMate1 ノックアウトマウスで顕著に低下することが知られている

(Tsuda et.al., 2009)_o

そこで本章では、9種類のカチオン性化合物を用い、ヒトhMATE1のマウスオルソロ

グである mMatel を強制発現させた HEK293 細胞への取り込み活性と mMatel ノックア ウトマウスでの腎分泌を野生型マウスでの結果と比較することで, in vitro(取り込み方 向)と in vivo(排泄方向)の基質認識について,輸送の方向性が影響するのかを定性的・ 定量的に評価した。

第2節 in vitro uptake 試験

mMatel 発現 HEK293 細胞への 9 種類のカチオン性化合物の時間依存的な取り込みと mMatel を完全に阻害する 100 μM の pyrimethamine 存在下での取り込みを対照細胞への 取り込みと比較した (Figure 12)。

Figure 12 Time-dependent uptake of cationic compounds in mMate1-expressing HEK293 cells. Uptake of 0.3 μ M of cationic compounds (almotriptan, naratriptan, talinolol, sumatriptan, alogliptin, sitagliptin, rivaroxaban, saxagliptin, and vildagliptin) and the effect of mMate1 inhibitor pyrimethamine (100 μ M) were determined at pH 7.4 in mMate1-expressing (\bigcirc , \bigcirc) and mock vector-transfected (\blacksquare , \Box) HEK293 cells after intracellular pre-acidification with 20 mM ammonium chloride (NH₄Cl). Each bar represents the mean \pm S.D. (n =3). Statistical analysis was conducted using one-way ANOVA with Dunnett's post-test. *p < 0.05

Alomotriptan, naratriptan, talinolol, sumatriptan, alogliptin, sitagliptin の mMatel 発現細胞 への取り込みは,対照細胞に比較して有意に高く,またその取り込みは mMatel 阻害薬 pyrimethamine の添加によって消失した。実施可能な最小のインキュベーション時間と して 0.25 分を設定して mMatel 発現細胞と対照細胞への初期取り込みを追加取得し, 規制当局のガイドラインでの記載に従い,発現細胞と対照細胞への取り込み比 (uptake ratio: UR) が 2 以上であった上記の 6 化合物を in vitro の取り込み方向の輸送に基づく 基質と判定した (Figure 13 and Table 3)。

Figure 13 Initial uptake of cationic compounds in mMate1-expressing HEK293 cells. Uptake of almotriptan (0.3 μ M), naratriptan (0.3 μ M), talinolol (1 μ M), sumatriptan (0.3 μ M), alogliptin (1 μ M), sitagliptin (1 μ M), rivaroxaban (1 μ M), saxagliptin (1 μ M), and vildagliptin (1 μ M) was determined for 0.25 min at pH 7.4 in mMate1 and mock vector-transfected HEK293 cells after intracellular pre-acidification with 20 mM NH₄Cl. Each bar represents the mean \pm S.D. (n=3). Statistical analysis was conducted using unpaired t-test. *p < 0.05.

Table 3 in vitro uptake clearances, net uptake and uptake ratios into mock vector-transfectedand mMate1-expressing HEK293 cells.

	Uptake (µL/0.25	5min/mg protein)	NI-4	Lintolvo notio	
	Mock mMate1		- Net uptake	Uptake Tatio	
Almotriptan	11.2 ± 1.23	30.9 ± 0.603	19.7	2.76	
Naratriptan	5.27 ± 1.18	29.1 ± 3.86	23.8	5.52	
Talinolol	5.16 ± 0.183	20.6 ± 0.416	15.4	3.99	
Sumatriptan	3.62 ± 1.29	18.5 ± 2.25	14.9	5.11	
Alogliptin	6.19 ± 0.983	17.5 ± 2.58	11.3	2.83	
Sitagliptin	4.89 ± 0.655	13.1 ± 0.987	8.21	2.68	
Rivaroxaban	9.66 ± 2.09	13.7 ± 0.987	4.04	1.42	
Saxaglitpin	3.15 ± 0.716	4.01 ± 0.459	0.860	1.27	
Vildagliptin	2.99 ± 0.567	3.62 ± 0.311	0.630	1.21	

Each value represents the mean \pm S.D. (n = 3)

第3節 mMatel ノックアウトマウスを用いた in vivo efflux 試験

9 種類のカチオン性化合物を mMatel ノックアウトマウスと野生型マウスに頸静脈よ り 120 分間定速持続静注を行い,血漿中濃度,尿中排泄速度,腎臓内濃度を測定した (Figure 14)。血漿中濃度推移は 120 分時点でもすべての化合物で定常状態に達してい なかったため,その後の解析は 90 分と 120 分における血漿中濃度の平均値である C_{p,ave} を使用した。

Figure 14 Comparison of the renal elimination of cationic compounds between mMate1 knockout mice and wild type mice. Plasma concentrations, urinary excretion rates, and kidney concentrations were determined in control (\bigcirc) and mMate1 knockout mice (\blacksquare) whose bladders were cannulated for the collection of urine. Alomotriptan (4.0 nmol/min/kg), naratriptan (4.4 nmol/min/kg), talinolol (2.3 nmol/min/kg), sumatriptan (5.1 nmol/min/kg), alogliptin (1.8 nmol/min/kg), sitagliptin (2.2 nmol/min/kg), rivaroxaban (2.3 nmol/min/kg), saxagliptin (2.4 nmol/min/kg), vildagliptin (3.2 nmol/min/kg) was administered to male C57BL/6 mice by intravenous infusion. Blood samples were collected at designated times, and urine samples were collected at 30 min intervals. At the end of the experiment, the kidneys were removed. Each point represents the mean value, and error bars represent the S.D. (n= 4). Statistical analysis was conducted using unpaired t-test. *p < 0.05

ノックアウトマウスの in vivo パラメータを野生型マウスと比較すると、血漿中濃度 ($C_{p,ave}$) においては、sumatriptan (40%),talinolol (27%)の上昇が認められ、尿中排 泄速度 (V_{urine})は、alomotoriptan (41%),naratriptan (28%),talinolol (45%), sumatriptan (33%),alogliptin (30%)で減少した。腎臓中濃度 (C_{kidney})は naratriptan (116%),talinolol (123%),sumatriptan (102%),alogliptin (37%),saxagliptin (103%),sitagliptin (42%)で上昇した。以上のように、第2節で in vitro uptake 試験 で基質と判定された6化合物においては、血漿中濃度、尿中排泄速度、腎臓中濃度の いずれかに変化が認められた (Table 4)。Almotriptan や naratriptan のように血漿中濃度 に変化が現れない化合物であっても、尿中排泄速度や腎臓中濃度の変化により、腎ク リアランス ($CL_{R, plasma}, CL_{R, kidney}$)は有意に低下した。mMatel介在の腎分泌固有クリ アランスを表す $CL_{R, kidney}$ の低下を示す化合物を in vivo の分泌方向の mMatel 基質と定 義したところ、false-positive となる例はなく、in vitro の取り込み方向で基質と判定さ れた6化合物はすべて in vivo 基質と判定され、定性的な基質判定は一致した。一方 で,saxagliptin は in vitro と in vivo の基質判定が一致しない false-negative の一例であっ た。

Table 4 Pharmacokinetic parameters for cationic compounds in mMate1 knockout mice andwild type mice. Each value was determined from the data shown in Figure 14. Each value representsthe mean \pm S.D. (n = 4) Statistical analysis was conducted using Unpaired t-test. *p< 0.05.</td>

		Alomot	notriptan Naratriptan Talinolol		olol		
		WT	Mate1(-/-)	WT	Mate1(-/-)	WT	Mate1(-/-)
C _{p,ave}	(nM)	28 ± 8.2	29.6 ± 1.4	68.5 ± 21	78.5 ± 6.4	15.4 ± 4.6	$19.5 \pm 1.8^{*}$
C _{kidney}	(pmol/g kidney)	97.1 ± 53.4	118 ± 16	335 ± 212	$724\pm 58^{\ast}$	618 ± 40	$1380\pm100^{*}$
V _{urine}	(nmol/min/kg)	1.48 ± 0.04	$0.87 \pm 0.158^{*}$	2.35 ± 0.18	$1.69\pm0.3^*$	1.01 ± 0.06	$0.56\pm0.13^*$
F _{urine}	(%)	35.4 ± 3.4	$21.7\pm4^{\ast}$	50.4 ± 5.6	$38.3\pm 6.6^{\ast}$	42.9 ± 2.6	$23.9\pm5.6^{\ast}$
CL _{tot}	(mL/min/kg)	144 ± 14	135 ± 8	65.7 ± 10.8	56.8 ± 6.6	154 ± 18	$121\pm14^{\ast}$
CL _{R, plasma}	(mL/min/kg)	50.8 ± 5.4	$29.5\pm 6.4^{\ast}$	32.9 ± 5	$21.8\pm4.4^{\ast}$	65.8 ± 6.8	$29.4\pm9^{\ast}$
K _{P,kidney}	(mL/g kidney)	3.18 ± 1.86	3.88 ± 0.52	4.48 ± 2.86	$9.13 \pm 1.58^{\ast}$	36.2 ± 3	$70.2\pm10.4^{\ast}$
fp		0.6	4	0.7	74	0.3	36
CL _{R, kidney}	(mL/min/kg)	13.2 ± 2.0	$5.29 \pm 1.4^{\ast}$	5.03 ± 1.8	$1.25\pm0.66^*$	1.68 ± 0.15	$0.347 \pm 0.043*$
CR		5.67 ± 0.70	$3.29\pm0.61^*$	3.17 ± 0.77	2.1 ± 0.58	13.1 ± 1.1	$5.84\pm0.6^{\ast}$
		Sumat	riptan	Alog	iptin	Sitag	liptin
		WT	Mate1(-/-)	WT	Mate1(-/-)	WT	Mate1(-/-)
C _{p,ave}	(nM)	34.9 ± 10.4	$48.8\pm4.2^*$	57.3 ± 16.8	$70.8\pm7.8^{*}$	30.9 ± 8.8	$36.9\pm3^*$
C _{kidney}	(pmol/g kidney)	128 ± 96	259 ± 22	874 ± 248	1200 ± 40	375 ± 158	531 ± 50
V _{urine}	(nmol/min/kg)	1.5 ± 0.18	$1.01\pm0.26^*$	1.88 ± 0.18	1.32 ± 0.52	1.96 ± 0.16	1.58 ± 0.32
F _{urine}	(%)	28.2 ± 3.8	20 ± 5	105 ± 10	73.1 ± 28.4	84.7 ± 9.8	71.3 ± 14.2
CL _{tot}	(mL/min/kg)	149 ± 30	105 ± 12	31.6 ± 2.8	$25.6\pm2.4^*$	71.9 ± 5.2	$60.1\pm4^{*}$
CL _{R, plasma}	(mL/min/kg)	41.6 ± 6.8	$20.7\pm4.4^{\ast}$	33.1 ± 4.4	$19.1\pm8.4^{*}$	60.7 ± 6	$43.2\pm10.8^{\ast}$
K _{P,kidney}	(mL/g kidney)	3.25 ± 2.2	5.16 ± 0.64	13.7 ± 4.2	15.3 ± 1.6	10.8 ± 3.8	13.5 ± 1.4
fp		0.8	3	0.59		0.74	
CL _{R, kidney}	(mL/min/kg)	9.22 ± 3.5	$1.76\pm0.7^{\ast}$	1.81 ± 0.3	$0.708\pm0.4^*$	4.66 ± 0.71	$2.43 \pm 0.81^{*}$
CR		3.58 ± 0.9	$1.78\pm0.3^*$	4.01 ± 0.5	$2.32\pm0.8^{*}$	5.86 ± 0.74	$4.17\pm1.1^{*}$
		Rivaro	xaban	Saxagliptin		Vildagliptin	
		WT	Mate1(-/-)	WT	Mate1(-/-)	WT	Mate1(-/-)
C _{p,ave}	(nM)	174 ± 48	212 ± 20	30.4 ± 8.6	$36.5\pm3.6^*$	84.9 ± 23.8	$100\pm9^*$
C _{kidney}	(pmol/g kidney)	475 ± 30	416 ± 110	355 ± 54	$719\pm76^{*}$	531 ± 172	522 ± 90
V _{urine}	(nmol/min/kg)	0.11 ± 0.050	0.09 ± 0.05	0.941 ± 0.07	0.79 ± 0.2	0.81 ± 0.08	0.7 ± 0.19
Furine	(%)	4.86 ± 1.92	3.93 ± 2.3	39.0 ± 2.6	33.1 ± 8.2	24.3 ± 2.8	21.5 ± 6
CL _{tot}	(mL/min/kg)	13.1 ± 1.00	10.8 ± 1.40	79.9 ± 10.2	66.4 ± 7.8	38.2 ± 2.2	$32.5\pm3^*$
CL _{R, plasma}	(mL/min/kg)	0.648 ± 0.30	0.405 ± 0.18	31.2 ± 4.8	22 ± 6.2	9.24 ± 1	6.88 ± 1.44
K _{P,kidney}	(mL/g kidney)	2.54 ± 0.28	1.93 ± 0.58	10.8 ± 1.60	$19.2\pm4.8^{*}$	5.81 ± 1.9	4.9 ± 1.32
fp		0.1	11	0	.7	0.9	99
$\operatorname{CL}_{R, kidney}$	(mL/min/kg)	$\textbf{-0.35} \pm 0.13$	$\textbf{-0.588} \pm 0.14$	1.98 ± 0.49	$0.635 \pm 0.33^{*}$	$\textbf{-0.80} \pm 0.20$	$\textbf{-1.42}\pm0.39$
CR		0.42 ± 0.22	0.26 ± 0.18	3.18 ± 0.54	2.24 ± 0.66	0.67 ± 0.09	0.5 ± 0.14

第4節 In vitro-in vivo correlation (IVIVC) の検証

mMatel ノックアウトマウスと野生型マウスの in vivo 腎クリアランス(CL_{R, plasma}, CL_{R, kidney})の差 (Figure 15A and B) と比 (Figure 15C and D) を計算し, in vitro の net uptake と uptake ratio と比較した。差の解析の R² 値は 0.32 (CL_{R, plasma}, p=0.114) と 0.43 (CL_{R, kidney}, p=0.0555),比の解析では R² 値は 0.29 (CL_{R, plasma}, p=0.136) と 0.66 (CL_{R, kidney}, p=0.00737) であり、CL_{R,kidney}の比の解析のみが統計的に有意な相関を示した (Figure 15)。

Figure 15 Comparison between in vitro uptake and in vivo renal secretory elimination of cationic compounds. In vitro net uptake and uptake ratio were compared with the difference (A, B) or the ratio (C, D) either in plasma concentration-based renal clearance ($CL_{R, plasma}$: A, C), or kidney concentration-based renal clearance ($CL_{R, kidney}$: B, D) between WT and mMate1 KO mice. Closed squares, closed triangles and open circle represent substrates (both in vitro and in vivo), non-substrate (both in vitro and in vivo), false-negative substrate, respectively.

第5節 マウス-ヒト間の種差の考察

マウスとヒトとの種差比較のために,9 種類のカチオン性化合物の hMATE1 発現 HEK293 細胞への初期取り込み(0.25分)を追加検討した。Alogliptin は mMate1 発現細 胞のみ, rivaroxaban は hMATE1 発現細胞にのみ統計的に有意な取り込みを示したが uptake ratio の相関は非常に良かった(Figure 16, 17 and Table 5)。

Figure 16 Comparison of uptake ratio of cationic compounds between mMate1- and hMATE1expressing HEK293 cells. Initial uptake of almotriptan (0.3 μ M), naratriptan (0.3 μ M), talinolol (1 μ M), sumatriptan (0.3 μ M), alogliptin (1 μ M), sitagliptin (1 μ M), rivaroxaban (1 μ M), saxagliptin (1 μ M), and vildagliptin (1 μ M) was determined for 0.25 min at pH 7.4 in mMate1- , hMATE1-expressing HEK293 and mock vector-transfected HEK293 cells after intracellular pre-acidification with 20 mM NH₄Cl. Uptake ratios were calculated by dividing the mean value of uptake in mock vector-transfected cells from that in transporter-expressing cells.

Figure 17 Initial uptake of cationic compounds in mMate1 and hMATE1-expressing HEK293 cells. Each bar represents the mean \pm S.D. (n=3). Statistical analysis was conducted using One-way ANOVA with Dunnett's post-test. *p < 0.05.

Table 5 in vitro uptake clearances and uptake ratios into mock vector-transfected, mMate1- orhMATE1-expressing HEK293 cells.

-					
	Uptake ((μL/0.25min/mg μ	Uptak	e ratio	
	Mock	mMate1	hMATE1	mMate1	hMATE1
Almotriptan	11.2 ± 1.23	30.9 ± 0.603	39.8 ± 1.56	2.76	3.55
Naratriptan	5.27 ± 1.18	29.1 ± 3.86	49.6 ± 3.11	5.52	9.41
Talinolol	5.16 ± 0.183	20.6 ± 0.416	20.8 ± 0.306	3.99	4.03
Sumatriptan	3.62 ± 1.29	18.5 ± 2.25	29.7 ± 2.15	5.11	8.20
Alogliptin	6.19 ± 0.983	17.5 ± 2.58	8.27 ± 1.69	2.83	1.34
Sitagliptin	4.89 ± 0.655	13.1 ± 0.987	12.5 ± 0.436	2.68	2.56
Rivaroxaban	9.66 ± 2.09	13.7 ± 0.987	20.8 ± 0.643	1.42	2.15
Saxaglitpin	3.15 ± 0.716	4.01 ± 0.459	2.99 ± 1.02	1.27	0.949
Vildagliptin	2.99 ± 0.567	3.62 ± 0.311	2.44 ± 1.12	1.21	0.816

Each value represents the mean \pm S.D. (n = 3)

第6節 考察

腎臓の hMATE1 が阻害されると、血漿中濃度に大きく反映されることなく腎臓内の 基質の濃度が上昇する可能性があり、腎毒性や薬効の変化につながる。しかし、ヒトの 臨床試験データから hMATE1 介在の腎分泌固有クリアランスを推定することは容易で はなく、ヒトにおける in vitro と in vivo のクリアランスの相関関係を正確に検証するこ とは困難である。そこで本研究では、マウスのオルソログである mMate1 ノックアウト マウスにおける MATE を介した尿中排泄の変化を調べ、9 種類のカチオン性化合物を用 いて、生理学的な排泄方向とは反対向きの in vitro での取り込み試験から判定される基 質認識が in vivo と定性的・定量的に一致するか否かを検討した。そして、mMate1 と hMATE1 の間での in vitro の基質認識の結果から、種差を超えての IVIVC の外挿が可能 か考察することとした。

本研究では、マウスの尿中排泄における mMatel の重要性についてノックアウトマウ スを用いることで知見を深めることができた。In vitro で基質と判定された 6 化合物は in vivo efflux 試験の各種パラメータにノックアウトマウスと野生型マウス間で変動がみ られた。mMatel の欠損の影響がどのパラメータに反映されるかは、extended clearance concept に従うと個々の化合物の腎分泌における律速段階に依存する。たとえば、血管 側からの取り込み過程が律速段階である場合、mMatel 欠損の影響は、尿中排泄率を変 化させることなく、腎臓内の薬物濃度を上昇させる可能性が高い。それゆえ、腎臓内の 薬物濃度を基準とした CL_{R, kidney} のノックアウトマウスと野生型マウス間の変化は mMatel を介した腎分泌を評価するためのよりよい指標であると考えられる。本研究で は、評価した9 化合物のうち CL_{R, kidney} が統計学的に有意に減少した7つを in vivo 基質 として分類した (Table 4)。なお、本研究では4 匹/群のマウスを用いた結果、7 化合物 について CL_{R,kindey} の有意差を検出することができた。しかし、検討した化合物が in vivo の基質ではないという結論を導き出すには、実験的なバラつきも考慮し、統計的に検出 可能な充分な例数を使用するなど、注意深い in vivo 実験の設計が必要であろう。

Saxagliptin は、外向きのH⁺勾配下においても in vitro では mMatel による取り込みが 認められず、mMatel ノックアウトマウスでは野生型マウスに比べ $C_{p,ave} \geq C_{kidney}$ の上昇 がみられることで、 $CL_{R,kidney}$ が有意に低下する、in vitro と in vivo の基質判断が一致し ない例外であった(Figures 13, 14 and Table 4)。この矛盾を説明する完全な理由は明らか ではないが、Saxagliptin は他の DPP-4 阻害薬とは異なり、DPP-4 の活性部位の Ser 630 と共有結合を形成し(Kim et al., 2006)、その解離半減期は非常に長いことが報告されて いる(Wang et al., 2012)。DPP-4 は腎臓に高発現することが知らており、このような target specific もしくは non specific な結合や吸着は、in vitro の基質判定を見誤るリスクのひと つと考えられた。実際には、このような不一致は、特に薬物開発における薬物間相互作 用リスク予測において、問題となる可能性がある。より精度の高い in vivo 予測性を持 つ, 優れた in vitro システムの開発が期待される。 腎分泌における OCT2 および hMATE1 トランスポーターの関与を調べるために, OCT2 および hMATE1 を単層膜培養した MDCK 細胞などの極性細胞に共発現させる方法では, metformin 分泌方向への輸送が再 現されている (König et al., 2011)。 hMATE1 のみを接着細胞へ発現させた取込み試験で は 基 質 と は な ら な い い く つ か の 化 合 物 (pramipexole, lamivudine, memantine, trimethylamine-N-oxide) は, OCT 2 と hMATE 1 を共発現した transwell 上に培養した経 細胞輸送試験においては, 分泌方向への輸送を示すという報告もある (Knop et al., 2015; Müller et al., 2013; Müller et al., 2017; Gessner et al., 2018)。 hMATE1 を介する腎分泌クリ アランスとこれらの経細胞輸送試験から得られるクリアランスとの間の IVIVC は検証 されていないが,本研究で得られた結果を考慮すると,細胞内に蓄積された基質濃度を 基準にした in vitro クリアランスを定義する必要があると考えられる。

mMatel を介する in vitro での取り込みクリアランスと in vivo での腎分泌クリアラン スの関係を定量的に考察するため、ノックアウトマウスと野生型マウスの腎クリアラン ス (CL_{R, plasma}, CL_{R, kidney})の変化を計算した。(Table 4)。本研究で行った 4 つの異なる解 析のうち、CL_{R, kidney}の比の解析にのみ統計的に有意な相関(R^2 =0.66、p=0.00737)が認 められた(Figure 15)。この R²値は false negative であった saxaglitpin を除くと 0.66 か ら 0.85 (p=0.00398) に改善した(data not shown)。臨床試験で通常得られる CL_{R, plasma} は 血管側膜からの取り込みと流出のクリアランスおよび、頂端膜を介する分泌クリアラン スで構成される複合パラメータである。したがって、CL_{R, plasma} は血管側膜からの流出が 頂端膜を介する分泌と比べ十分大きい等の限られた条件においてのみ CL_{R, kidney} と相関 する。さらに、CL_{R, kidney}の比の解析は腎臓中非結合形分率(f_{kidney})に依存しないパラメ ータであるが、差の解析では f_{kidney}の絶対値の影響を受けることが CL_{R, kidney}の比の解析 のみが有意な相関を示した可能性として考えられた。以上のように、mMatel の基質認 識が in vitro(取り込み方向)と in vivo(排泄方向)に関係なく同一で、良好な相関がみ られたことから、生理学的な排泄方向とは逆向きの取り込み試験で得られる in vitro の uptake ratio が in vivo の腎臓での分泌機能の指標として有用であることが示唆された。

mMatel と hMATE1 の高いアミノ酸配列相同性 (78%) から予想されたとおり, mMatel と hMATE1 の間の uptake ratio には良好な相関が観察された (Figure 16)。このことは, hMATE1 の uptake ratio がヒトにおいても hMATE1 を介した $CL_{R,kidney}$ と相関する可能性 を示唆している。実際, これらの薬物の腎クリアランスは糸球体濾過によるクリアランス ($f_p \ge GFR$)を上回り, 分泌が関与している (Table 6)。

	CL _{R, plasma} (mL/min)	f_p	f _p x GFR (mL/min)	reference
Almotriptan	433	0.7 - 0.8	88 - 96	Jansat (2002)
Naratriptan	220	0.8	100	Tfelt-Hansen (2000)
Talinolol	283	0.45	56	Westphal (2000), Tubic(2006)
Sumatriptan	263	0.84	105	Lacey (1995)
Alogliptin	163 - 218	0.8	100	Sheen (2011)
Sitagliptin	350	0.62	78	Sheen (2011)
Rivaroxaban	40	0.073	9.1	Kubitza (2010)
Saxaglitpin	230	1.0	125	Sheen (2011)
Vildagliptin	217	0.91	113	Sheen (2011)

Table 6 Renal clearances, fraction unbound in plasma and filtration clarences observed in human clinical studies. Greater $CL_{R,plasma}$ than $f_p \ge GFR$ indicates the involvement of active renal secretion. 125 mL/min was used as GFR for human.

しかしながら、ヒト臨床においては腎臓の hMATE1 が介在する腎分泌固有クリアラ ンスを算出することは依然として困難であり、様々な課題を考慮する必要がある。まず、 $CL_{R,kidney}$ を定義するためには、腎臓内の基質濃度を求めなければならない。陽電子放射 型断層撮影(positron emission tomography: PET)法はヒト組織中の薬物の濃度-時間-プロ ファイルを得る唯一の方法である(Gormsen et al., 2016; Shingaki et al., 2015)が、特殊な 設備と化合物骨格内に陽電子を放出する元素をプローブとして導入することが必要な ため、医薬品開発において日常的に PET 法を用いたイメージング研究を行うことは現 実的でない。次に、臨床用量で hMATE1/2-K を完全に阻害することができる阻害薬がな いことが挙げられる。今回評価に用いた 9 種類のカチオン性化合物の $CL_{R,kidney}$ に対する MATE 阻害薬 pyrimethamin(20 µmol/kg, bolus injection 15 min prior to start of infusion)の 効果は mMate1 ノックアウトマウス試験で得られたものより弱かった(Figure 18)。

Figure 18 CL _{R, Kidney} difference between wild type mice and mMate1(-/-) mice or control mice and PYR-treated mice. 20 µmol/kg pyrimethamine was administered via bolus injection 15 min prior to start of infusion of test substrate.

Miyake らの研究によると pyrimethamine は最大臨床投与量(75 mg)で, MATE 基質 である metformin, methylnicotinamide および N-methyladenosine の腎クリアランスをそ れぞれ 55%, 58%, 48%減少させることが知られている(Miyake et al., 2021)。強力な阻害 薬である pyrimethamine においても, hMATE1/2-K 活性が完全に阻害される可能性は低 い。また, マウスと異なりヒトの腎臓では hMATE2-K が hMATE1 に比較すると低い発 現量であるものの機能している可能性が挙げられる(Parasad et al., 2016; Ishiguro et al., 2023; Fukuda et al., 2017)。hMATE1 と hMATE2-K は基質選択性が重複するため, hMATE1 と hMATE2-K の両方を阻害しうる阻害薬がヒト腎臓において hMATEs を介する分泌が 阻害された際の影響を明らかにするためには必要である。最後に, hMATE1 を介した薬 物間相互作用をより定量的に推定するためには,時間プロファイルを考慮した数理モデ ルを用いた解析が必要であろう(Nakada et al., 2018; Mathialagan et al., 2017)。

本研究は、生理学的な排泄方向への輸送とは反対向きの in vitro の取り込みクリアラ ンスと in vivo mMatel を介した腎分泌クリアランスの相関を検証した初めての研究で ある。In vitro uptake 試験で基質と判定された薬物は、mMatel を介して尿中に排泄され ることが確認され、基質の認識は輸送の方向性に依存せず、同一であることを示した。 マウスにおける IVIVC とマウスとヒト間の uptake ratio に良好な相関が認められたこと から、ヒト腎臓においても uptake ratio が hMATE1 を介する腎分泌の有用な指標となり うることが示唆された。

結論

本研究は、医薬品開発において、hMATE1 を介した薬物間相互作用リスクをhMATE1 の生理学的な排泄方向の輸送とは逆向きの取り込み試験として評価することの妥当性 を、①阻害薬のトランスポーター阻害強度、②基質認識性および輸送能力の2つの側面 から複数の化合物を用いて検証し、腎臓での mMate1 および hMATE1 の機能と in vitro 評価指標の関連性を明らかにすることで、新規医薬品開発化合物の早期かつ精度の高い 薬物間相互作用リスク評価を可能にすることを目的とした。

第1章では hMATE1 阻害薬の排泄方向での阻害強度を定量的に評価する新たな手法 を開発し、12種類の既知の hMATE1 阻害薬の IC₅₀ 値が取り込み方向と排泄方向で異な るかを検討した。hMATE1 を強制発現させた HEK293 細胞を用いて、細胞内外の H⁺勾 配を人工的に操作することで、基質輸送の方向性をコントロールし、阻害薬の IC₅₀ 値を 取り込み方向と排泄方向で比較した結果、metformin を基質として用いた場合は、輸送 の方向性に寄らず IC₅₀ 値の差が 4 倍以内であったことが示された。また、規制当局が推 奨する $C_{max,u}/IC_{50} > 0.02$ を指標として用いた場合、uptake 阻害試験と efflux 阻害試験か ら得られた IC₅₀ 値の違いによる metformin AUC 上昇における相互作用のリスク判定に 差はなかった。これらの結果から、医薬品開発においては、患者に対する相互作用リス クを軽減するため保守的な判断が好まれる点も考慮すると、metformin の細胞取り込み に対する阻害試験が、新規開発化合物の hMATE1 阻害の IC₅₀ 値を決定するための最良 の実験条件であると結論した。

第2章では、9種類のカチオン性化合物を用い、ヒトhMATE1のマウスオルソログ である mMatel を強制発現させた HEK293 細胞への取り込み活性と mMatel ノックアウ トマウスでの血漿中濃度推移,尿中未変化体排泄速度,腎臓内濃度を野生型マウスでの 結果と比較して評価した。

取り込み方向の輸送に基づく基質判定は,mMatel 発現細胞と対照細胞への取り込み 量との比(uptake ratio)が2以上を基準とし,排泄方向の輸送に基づく基質判定は,腎 臓内濃度基準の腎クリアランス(CL_{R,kidney})のmMatel ノックアウトマウスと野生型マ ウス間の有意な変化とした。その結果,取り込み方向の基質判定と排泄方向の定性的な 基質判定の間には一貫性が見られ,in vitro 取り込み試験でmMatel 基質と判定された6 種の化合物すべてにおいて, in vivo 実験で腎排泄に mMatel の関与が示された。Uptake ratio と $CL_{R,kidney}$ の間に統計的に有意な相関がみられ,これは mMatel の基質認識性が輸送の方向性に関わらず,同一であることを示唆しており, in vitro 取り込み試験から得られた uptake ratio は in vivo の腎分泌クリアランスにおける重要性を示唆する有望な指標 となりうると考えられた。

さらに、mMatel と 78%のアミノ酸配列相同性を示す hMATE1 との間で uptake ratio の 良好な相関がみられた。この相関は、新規開発化合物の腎排泄に hMATE1 が果たす役 割を評価するために、ヒト hMATE1 の in vitro 試験で得られる uptake ratio が有用な指標 となり得ることを示唆している。

以上、本研究では、新規開発化合物について hMATE1 に起因する薬物間相互作用の リスク評価に、取り込み試験を用いることの妥当性を検証した。その結果、輸送の方向 性によらず、阻害薬の ICso 値は metformin を基質として用いる場合は4倍以内であり同 等と考えられること、また基質認識性および輸送能力が一致することを明らかとした。 これらの結果は、腎臓での mMate1 および hMATE1 の機能と in vitro 評価指標の関連性 に重要な示唆を与えるものであり、新規候補化合物の開発において簡便に実施可能な in vitro 取り込み試験の結果が有用に使いうることが期待される。本研究の成果の一般性 をより担保するために、今後増えていくであろう hMATE1 に起因する薬物間相互作用 の臨床事例をさらに加えていくことで、薬物相互作用リスクの予測性の向上とそれに連 動する薬効・副作用評価の最適化が進むものと期待している。

謝辞

終わりに臨み,本研究の推進に際して終始御懇切なるご指導,御鞭撻を賜りました東 京大大学大学院 薬学系研究科 分子薬物動態教室 教授 楠原洋之 先生に衷心より深甚 なる謝意を表します。

また、本稿を終えるにあたり、種々の有益な御助言と常にあたたかく前向きなお言葉 をかけて頂きました北里大学 薬学部 薬剤学研究室 教授 前田和哉 先生に心より厚 く御礼申し上げます。

さらに,本研究に御協力頂きました東京大学大学院 薬学系研究科 分子薬物動態教 室卒業生の鬼頭智子先生,京都大学病院薬剤部 乾賢一先生に心より感謝申し上げます。

さらに、本研究と本稿を遂行する環境を整えて下さり、数多くのご助言をいただきま した、日本ベーリンガーインゲルハイム株式会社 薬物動態安全性研究部 石黒直樹 博 士、岸本航 博士, Bojan Bister 前部長、片山拓馬 部長、さらに、実験に御協力頂きま した、高谷真仁 氏、三宅みちる氏、工藤喬 博士と薬物トランスポーターグループの皆 様に深く感謝致します。

最後に,いつも応援してくれた子供たちと,よき理解者として支えてくれた夫に心から感謝いたします。

2024 年 5 月 齋藤 麻美

実験方法

Chemicals and reagents

[¹⁴C]metformin (100 mCi/mmol), [³H]metformin (8 Ci/mmol) は, Moravek Biochemicals (Brea, CA, USA), [³H]MPP⁺ (80 Ci/mmol) は American Radiolabeled Chemicals (Saint Louis, MO, USA) より購入した。非標識体の metformin は和光純薬 (Osaka, Japan), MPP⁺, almotriptan malate は Sigma (St. Louis, MO, USA) より購入した。Alogliptin, naratriptan hydrochloride, rivaroxaban, saxagliptin, sitagliptin phosphate, sumatriptan succinate, talinolol, vildagliptin は Toronto Research Chemicals (Toronto, Ontario, Canada) より購入した。その 他の試薬は特級もしくは分析グレードのものを用いた。

Animals

mMatel(-/-)マウスは京都大学医学部附属病院薬剤部の乾賢一先生よりご供与いただいた(Tuda et al., 2009)。野生型 C57BL/6J マウスは日本クレアより購入した。本試験行った動物実験は東京大学薬学部の動物実験指針に則って行った。

Cloning of mMate1, cell culture and transfection

マウス mMatel cDNA (NM_026183) はタカラバイオ (Shiga, Japan) で人工合成し, pcDNA3.1(-)にサブクローニングした。ヒト hMATE1 cDNA (NM_018242) をサブクロ ーニングした pcDNA3.1(-)はジェノメンブレンから購入した。Parental HEK293 細胞は, 10% fetal bovine serum と 1% antibiotic-antimycotic solution (Thermo Fisher Scientific, USA) を含む low glucose Dulbecco's modified Eagle medium (Thermo Fisher Scientific, USA) を 用いて、37°C、5% CO₂、95%湿度条件下で培養した。hMATE1 および mMate1 を一過性 に発現する HEK293 細胞は、当研究所の Lechner が以前に報告した (Lechner et al., 2016) 同様の方法で培養した。Parental HEK293 細胞を poly-D-Lysin コートされた 24-well plate に、0.75 x 10⁵ cells/well となるように播種し、翌日に Opti-MEM (Thermo Fisher Scientific, USA), vector control/hMATE1/mMate1 プラスミド (0.1 µg/well) と FuGENE6 transfection reagent (0.6 µL/well, Promega, USA) の混合溶液に暴露させた。Transfection 翌日には 5 mM の酪酸ナトリウムを含む培地に交換し、各トランスポーターの発現誘導を行った。

Uptake experiments using transiently transfected HEK293 cells

hMATE1 および mMate1 を一過性に発現する HEK293 細胞への uptake 試験は,当研 究所の Lechner が以前に報告した(Lechner et al., 2016)同様の方法で行った。トランス

フェクション2日後(酪酸ナトリウムを含む培地に交換した翌日), 37°Cに加温した20 mM NH4Cl を含む transport buffer (130 mM KCl, 2 mM KH₂PO₄, 1.2 mM MgSO₄, 1 mM CaCl₂, 20 mM HEPES, 5 mM glucose : pH 7.4) で2回洗浄後,同 buffer で10分間 37°C静置した。次に NH4Cl を含まない transporter buffer に置換し5分間静置することで,細胞内を酸性にした。細胞への取り込みは基質($[^{3}H]$ MPP⁺, $[^{14}C]$ metformin または9種類のカチオン性化合物)および阻害薬を含む transport buffer に置換することで開始した。一定時間後,buffer を吸引除去し,氷冷した transport buffer で3回洗浄することで,細胞への取り込みを停止させた。放射標識体を用いた実験では,NaOH を加え1時間 37°Cで細胞を溶解し,HCl で中和後,Ultima Gold XR (PerkinElmer, USA)と混合し,液体シンチレーションカウンターTRI-CARB 3110TR (PerkinElmer, USA)を用いて,放射活性を測定した。非標識体を用いた実験では、200 µL の精製水を加えてセルスクレーパーで細胞を回収した。0.1%ギ酸を含むアセトニトリルを細胞懸濁液に混合し 1000 g で5分間遠心することで除タンパクを行った。上清を等量の1%ギ酸で希釈し,LC-MS/MS 測定に用いた。各 well のタンパク質量は,bovine serum albumin を検量線として Lowry 法で測定した(Lowry et al., 1951)。

Efflux experiments using transiently transfected HEK293 cells

hMATE1 を一過性に発現する HEK293 細胞からの efflux 試験は、トランスフェクシ ョン2日後(酪酸ナトリウムを含む培地に交換した翌日)、37℃に加温した NH4Cl を含 まない transport buffer で 2 回洗浄後、同 buffer で 30 分間 37℃静置した。次に基質 ([³H]MPP⁺または[³H]metformin) を含む NH4Cl を含まない transporter buffer に置換し、 細胞内に 10 分間基質を preload した。細胞からの efflux は 20 mM の NH4Cl と種々の阻 害薬を含む transport buffer に置換することで開始した。Efflux の停止、細胞溶解、放射 能測定は上述の uptake 試験と同様の方法でおこなった。細胞内の総基質濃度は、HEK293 細胞容積を 6.5 µL/mgProtein と仮定して算出した (Gillen and Forbush, 1999)。

Equilibrium	Pre-load	Efflux	Termination
37°C	37°C	37°C	ice-cold
Aspirate culture media ↓ Wash (x 3) with NH₄Cl free buf ↓ Add 500 µL NH₄Cl free buf ↓ <u>30min</u>	Aspirate NH₄Cl free buf ↓ Add 250 µL NH₄Cl free buf with substrate ↓ <u>10min</u>	Aspirate NH₄Cl free buf with substrate ↓ Add 250 µL 20 mM NH₄Cl buf with or without inhibitor ↓ 0.25min	Aspirate 20 mM NH ₄ Cl buf with or without inhibitor \downarrow Wash (x3) with ice-cold NH ₄ Cl free buffer \downarrow Dry up \downarrow Cell collection

Supplemental Figure 1 Assay procedure of developed efflux assay.

Determination of intracellular pH

細胞内の pH は, hMATE1 を一過性に発現する HEK293 細胞を蛍光 pH 指示薬 2',7'bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein acetoxymetyl (BCECF-AM) に 30 分間 preload し, 種々の buffer へ置換後の蛍光測定を行うことで決定した。蛍光強度は蛍光プ レートリーダー Enspire (PerkinElmer, USA)の励起波長(488 nm および 460 nm), 蛍光 波長 (535 nm)を用いて測定し, 2 つの励起波長の比を算出した。細胞内 pH の検量線 は, 10 µM の nigericin を含む標準 pH buffer を hMATE1 発現細胞とインキュベーション し、上述の通り蛍光測定をすることで作成した (Thomas et al., 1979)。

Infusion study compounds in wild type and mMate1 knockout mice

In vivo 定速静注試験は, 過去の報告 (Kito et al., 2019) と同様の方法で行った。mMatel ノックアウトマウスおよび野生型 C57BL/6J マウスをイソフルラン麻酔下, 膀胱カニュ レーションを施し, 頸静脈より Harvard Apparatus Syringe Infusion Pump (Harvard Apparatus, USA) を用いて 2 nmol/mg/kg の速度で 120 分間定速持続投与した。血液サンプルは投与 開始後 30, 60, 90, 120 分後に頸静脈から回収し, 20,000 g で 2 分間遠心分離することで 血漿を得た。尿サンプルは, 30-60, 60-90, 90-120 の 30 分間隔で回収し 10 倍量の水で希 釈した。120 分の投与終了後, 腎臓を摘出し, 4 倍量の phosphate-buffered saline でホモ ジナイズした。得られた血漿, 尿, 腎臓のサンプルは4 倍量のアセトニトリルを加えて 20,000 g で 10 分間遠心分離することで除タンパクを行い,上清を 4 倍量の水で希釈後 LC-MS/MS 測定に用いた。

Determination of the unbound fraction in plasma

血漿中非結合形分率 (f_p) 算出は過去の報告 (Kito et al., 2019) と同様の方法で行った。 Rapid Equilibrium Dialysis (RED) device (Thermo Fisher Scientific, USA) を用い,マウス血 漿 (100%),等張のリン酸 buffer で 5 倍希釈した血漿 (20%),をリン酸 buffer と 37℃で 12 時間平衡透析した。使用した薬物濃度は 0.2 µM とした。

LC-MS/MS analysis for test substrate

In vitro uptake 試験サンプルの測定は, 超高速液体クロマトグラフィー (Prominence UFLC XR, Shimadzu, Kyoto)を連結した API 5000TM トリプル四重極質量分析装置 (AB Sciex, USA)を用いて行った。In vivo efflux 試験サンプルの測定は, 超高速液体クロマトグラフィー (Prominence UFLC XR, Shimadzu, Kyoto)を連結した QTRAP 5500 質量分析装置 (AB Sciex, USA)を用いて行った。詳細の分析条件は Supplemental Table 1 に示す。

Supplemental Table 1 Analytical methods for test compounds

(A) In vitro experiment

Compounds	Column Mot		Phase	Gradient condition	Flow Rate	Q1	Q3
		А	В	B%	Katt	(m/z)	(m/z)
Almotriptan						336.3	58.0
Naratriptan						336.3	98.2
Sumatriptan						296.2	58.1
Alogliptin	Atlantis T3			0 min; 3%, 0 1 min: 3%		340.3	115.9
Saxaglitpin	3 μm, 2.1 mm x 50 mm	0.1% Formic acid	Acetonitrile	2.6 min; 95%,	0.4	316.3	179.9
Sitagliptin				3.6 min; 95%, 5.0 min 3%		408.2	235.1
Vildagliptin						304.3	154.0
Rivaroxaban						436.2	145.1
Talinolol						364.4	308.1

(B) In vivo experiment

Compounds	Column	Mobile Phase		Gradient condition	Flow	Q1	Q3
		А	В	B%	Kate	(m/z)	(m/z)
Almotriptan	Atlantis T3 3 μm, 2.1 mm x 50 mm	0.1% Formic acid	Acetonitrile	0 min; 3%, 0.3 min; 3%, 2.2 min; 90%, 3.0 min; 90%, 3.1 min 3%	0.4	335.8	58.0
Naratriptan						335.7	98.1
Sumatriptan						296.2	157.1
Alogliptin	Inertsil ODS-4, 2 μm 2.1 mm x 50 mm			0 min; 3%, 0.3 min; 3%, 3.0 min; 90%, 4.0 min; 90%, 4.1 min 3%		340.5	116.0
Saxaglitpin						316.4	180.2
Sitagliptin						408.2	235.0
Vildagliptin						304.3	154.0
Rivaroxaban						436.2	144.9
Talinolol						364.9	309.2

Data analysis (in vitro)

hMATE1 と mMate1 による取り込みクリアランスは、下記の計算式に基づいて、細胞内に取り込まれた基質量を、用いた transport buffer 中の基質濃度と well 中のタンパク質量で除することで算出した。

$$Uptake \ CL = \frac{X_{cell}}{C_{medium}}$$

Uptake CL は取り込みクリアランス (µl/designated time point/mg protein), X_{cell} は細胞内 に取り込まれた基質量 (pmol/designated time/well), C_{medium} は transport buffer 中の基質濃 度 (µM) を表す。Net uptake は、hMATE1 もしくは mMate1 発現細胞の取り込みクリア ランスから対照細胞の取り込みクリアランスを差し引いて算出した。Uptake ratio は、 hMATE1 もしくは mMate1 発現細胞の取り込みクリアランスを対照細胞の取り込みクリ アランスを除することで算出した。

hMATE1 による efflux クリアランスは、下記の計算式に基づいて、100 μ M の pyrimethamine 存在下では hMATE1 は完全に阻害されると仮定し、pyrimethamine 存在下 の細胞内基質残存量から efflux 終了時の細胞内基質残存量を差し引き、細胞内基質濃度 時間の推移の AUC と well 中のタンパク質量で除することで算出した。

$$Efflux CL = \frac{X_{t_n, pyr} - X_{t_n}}{AUC_{0-t_n}}$$

Efflux CL は efflux クリアランス (μ l/designated time/mg protein), $X_{in,pyr}$ は 100 μ M pyrimethamine 存在下の efflux 終了時 (t_n : 阻害試験時は efflux 開始後 0.25 分)の細胞内 基質残存量 (pmol/designated time/well), X_{in} は各試験群の細胞基質残存量を表す pmol/designated time/well)。

プローブ基質はhMATE1 基質であるため, 細胞内に preload 後の細胞内濃度はhMATE1 細胞と vector のみをトランスフェクションした対照細胞では大きく異なり, efflux 試験 開始時の初期細胞内濃度を同一にすることは不可能であった。そのためコントロール群 には, 対照細胞を用いるのではなく, hMATE1 発現 HEK293 細胞に同様にプローブ基質 を preload し, efflux solution 中に hMATE1 活性を完全に阻害する pyrimethamine を 100 μ M を加えた。

Efflux インキュベーション中の細胞内からの総基質濃度の減少は一次消失式に従う とし、細胞内総基質濃度の経時的変化の AUC は以下の式で算出した。

$$AUC_{0-t_n} = \frac{t_n \times (C_0 - C_{t_n})}{\ln \left(C_0 / C_{t_n} \right)}$$

AUC は細胞内総基質濃度-時間曲線下面積 (μ M×min), t_n は efflux インキュベーション時間 (min), C_0 は初期細胞内総基質濃度 (μ M), C_m は t_n 時点での細胞内総基質濃度 (μ M) を表す。 t_n には実施可能な最小な時間として 0.25 分を設定した。

半最大阻害濃度(IC₅₀)は, GraphPad PRISM software version 8.3.0 を用いて, 4パラメ ータロジスティクス回帰式に基づいて算出した。

$$CL = CL_{min} + \left(\frac{(CL_{max} - CL_{min})}{1 + 10^{((logIC_{50} - I) \times Hill)}}\right)$$

CL は取り込みもしくは efflux クリアランス, *I* は細胞外に添加した transport buffer 中の阻害薬濃度, *Hill* はスロープ係数を表す。

Data analysis (in vivo)

尿中排泄率(Furine),全身クリアランス(CLtot),血漿中濃度基準の腎クリアランス(CLR,plasma),みかけの腎臓中-血漿中濃度比(Kp,kidney)および腎臓中濃度基準の腎クリ

アランス (CL_{R,kidney}) は以下の式により算出した。

$$F_{urine} = \frac{V_{urine,ave}}{Infusion rate} \times 100$$

$$CL_{tot} = \frac{Infusion rate}{C_{p,ave}}$$

$$CL_{R,plasma} = \frac{V_{urine,ave}}{C_{p,ave}}$$

$$K_{p,kidney} = \frac{C_{kidney}}{C_{p,ave}}$$

$$CL_{R,kidney} = \frac{CL_{R,plasma} - f_p \times GFR}{K_{p,kidney}}$$

$$CR = \frac{CL_{R,plasma}}{f_p \times GFR}$$

Vurine,ave は 90-120 分の尿中排泄速度を表す。*Vurine* は 30-60, 60-90, 90-120 分の尿中に 排泄された量から採尿間隔の 30 分で除することで算出した。*C_{p,ave}* は 90 分と 120 分の 血漿中濃度の平均値を表す。*C_{kidney}* は試験終了時点(120 分)での腎臓中の濃度を表す。 *CL_{R,kidney}* と *CR* はマウス GFR を 14 μL/min/kg (Davies and Morris, 1993) として計算した。

Statistical analysis

2 群間の比較にはには Microsoft Exect 365 を用い, F-test 後に unpaired t-tes を行うこと により有意差検定を行った。3 群以上の比較には, R software version 4.1.2 を用い, ANOVA とそれに続く Dunnett's test で有意差検定を行った。

今回検討した化合物の構造式

第1章(基質)

1-methyl-4-phenylpyridinium

 (MPP^+)

metformin

pyrimethamine

quinidine

ondansetron

famotidine

vandetanib

cephalexin

ranolazine

cobicistat

lansoprazole

almotriptan

н

sumatriptan

sitagliptin

rivaroxaban

saxagliptin

vildagliptin

引用文献

- Becker ML, Visser LE, Schaik RHN van, Hofman A, Uitterlinden AG, and Stricker BHCh (2009) Genetic Variation in the Multidrug and Toxin Extrusion 1 Transporter Protein Influences the Glucose-Lowering Effect of Metformin in Patients With Diabetes: A Preliminary Study. *Diabetes* 58:745–749.
- Benet LZ, Bowman CM, Liu S, and Sodhi JK (2018) The Extended Clearance Concept Following Oral and Intravenous Dosing: Theory and Critical Analyses. *Pharmaceut Res* 35:242.
- Chu X, Bleasby K, Chan GH, Nunes I, and Evers R (2016) The Complexities of Interpreting Reversible Elevated Serum Creatinine Levels in Drug Development: Does a Correlation with Inhibition of Renal Transporters Exist? *Drug Metab Dispos* **44**:1498–1509.
- Damme K, Nies AT, Schaeffeler E, and Schwab M (2011) Mammalian MATE (SLC47A) transport proteins: impact on efflux of endogenous substrates and xenobiotics. *Drug Metab Rev* **43**:499–523.
- Dangprapai Y, and Wright SH (2011) Interaction of H+ with the extracellular and intracellular aspects of hMATE1. *Am J Physiol-Ren Physiol* **301**:F520–F528.
- Davies B, and Morris T (1993) Physiological Parameters in Laboratory Animals and Humans. *Pharmaceut Res* **10**:1093–1095.
- Ding Y, Jia Y, Song Y, Lu C, Li Y, Chen M, Wang M, and Wen A (2014) The effect of lansoprazole, an OCT inhibitor, on metformin pharmacokinetics in healthy subjects. *Eur J Clin Pharmacol* **70**:141–146.
- Fukuda Y, Kaishima M, Ohnishi T, Tohyama K, Chisaki I, Nakayama Y, Ogasawara-Shimizu M, and Kawamata Y (2017) Fluid shear stress stimulates MATE2-K expression via Nrf2 pathway activation. *Biochem Bioph Res Co* **484**:358–364.
- Gessner A, König J, and Fromm MF (2018) Contribution of multidrug and toxin extrusion protein 1 (MATE1) to renal secretion of trimethylamine-N-oxide (TMAO). *Sci Rep-uk* 8:6659.

- Gillen CM, and Forbush B (1999) Functional interaction of the K-Cl cotransporter (KCC1) with the Na-K-Cl cotransporter in HEK-293 cells. *Am J Physiol-Cell Physiol* **276**:C328–C336.
- Gormsen LC, Sundelin EI, Jensen JB, Vendelbo MH, Jakobsen S, Munk OL, Christensen MMH, Brøsen K, Frøkiær J, and Jessen N (2016) In Vivo Imaging of Human 11C-Metformin in Peripheral Organs: Dosimetry, Biodistribution, and Kinetic Analyses. J Nucl Med 57:1920–1926.
- Hibma JE, Zur AA, Castro RA, Wittwer MB, Keizer RJ, Yee SW, Goswami S, Stocker SL, Zhang X, Huang Y, Brett CM, Savic RM, and Giacomini KM (2016) The Effect of Famotidine, a MATE1-Selective Inhibitor, on the Pharmacokinetics and Pharmacodynamics of Metformin. *Clin Pharmacokinet* 55:711–721.
- Hillgren KM, Keppler D, Zur AA, Giacomini KM, Stieger B, Cass CE, Zhang L, and Consortium IT (2013) Emerging Transporters of Clinical Importance: An Update From the International Transporter Consortium. *Clin Pharmacol Ther* **94**:52–63.
- Ishiguro N, Takahashi E, Arakawa H, Saito A, Kitagawa F, Kondo M, Morinaga G, Takatani M, Takahashi R, Kudo T, Mae S, Kadoguchi M, Higuchi D, Nakazono Y, Tamai I, Osafune K, and Jimbo Y (2023) Improvement of protein expression profile in three-dimensional renal proximal tubular epithelial cell spheroids selected based on OAT1 gene expression: a potential in vitro tool for evaluating human renal proximal tubular toxicity and drug disposition. Drug Metab Dispos 51:1177-1187
- Ito S, Ando H, Ose A, Kitamura Y, Ando T, Kusuhara H, and Sugiyama Y (2013) Relationship between the urinary excretion mechanisms of drugs and their physicochemical properties. J Pharm Sci 102:3294–3301.
- Ito S, Kusuhara H, Kumagai Y, Moriyama Y, Inoue K, Kondo T, Nakayama H, Horita S, Tanabe K, Yuasa H, and Sugiyama Y (2012) N-Methylnicotinamide Is an Endogenous Probe for Evaluation of Drug–Drug Interactions Involving Multidrug and Toxin Extrusions (MATE1 and MATE2-K). *Clin Pharmacol Ther* **92**:635–641.
- Ito S, Kusuhara H, Kuroiwa Y, Wu C, Moriyama Y, Inoue K, Kondo T, Yuasa H, Nakayama H, Horita S, and Sugiyama Y (2010) Potent and Specific Inhibition of mMate1-Mediated Efflux of Type I Organic Cations in the Liver and Kidney by Pyrimethamine. *J Pharmacol Exp Ther* 333:341–350.

- Ito Sumito, Kusuhara H, Yokochi M, Toyoshima J, Inoue K, Yuasa H, and Sugiyama Y (2012) Competitive Inhibition of the Luminal Efflux by Multidrug and Toxin Extrusions, but Not Basolateral Uptake by Organic Cation Transporter 2, Is the Likely Mechanism Underlying the Pharmacokinetic Drug-Drug Interactions Caused by Cimetidine in the Kidney. J Pharmacol Exp Ther 340:393–403.
- Ivanyuk A, Livio F, Biollaz J, and Buclin T (2017) Renal Drug Transporters and Drug Interactions. *Clin Pharmacokinet* 56:825–892.
- Jansat JM, Costa J, Salvà P, Fernandez FJ, and Martinez-Tobed A (2002) Absolute Bioavailability, Pharmacokinetics, and Urinary Excretion of the Novel Antimigraine Agent Almotriptan in Healthy Male Volunteers. J Clin Pharmacol 42:1303–1310.
- Jayasagar, G, Kumar, MK, Chandrasekhar, K, Rao, CM, and Rao, YM (2002) Effect of Cephalexin on the Pharmacokinetics of Metformin in Healthy Human Volunteers. *Drug Metabolism Drug Interactions* 19:41–48.
- Johansson S, Read J, Oliver S, Steinberg M, Li Y, Lisbon E, Mathews D, Leese PT, and Martin P (2014) Pharmacokinetic Evaluations of the Co-Administrations of Vandetanib and Metformin, Digoxin, Midazolam, Omeprazole or Ranitidine. *Clin Pharmacokinet* 53:837– 847.
- Kim YB, Kopcho LM, Kirby MS, Hamann LG, Weigelt CA, Metzler WJ, and Marcinkeviciene J (2006) Mechanism of Gly-Pro-pNA cleavage catalyzed by dipeptidyl peptidase-IV and its inhibition by saxagliptin (BMS-477118). Arch Biochem Biophys 445:9–18.
- Kito T, Ito S, Mizuno T, Maeda K, and Kusuhara H (2019) Investigation of non-linear Mate1mediated efflux of trimethoprim in the mouse kidney as the mechanism underlying drugdrug interactions between trimethoprim and organic cations in the kidney. *Drug Metab Pharmacokinet* 34:87–94.
- Knop J, Hoier E, Ebner T, Fromm MF, and Müller F (2015) Renal tubular secretion of pramipexole. *Eur J Pharm Sci* **79**:73–78.
- König J, Zolk O, Singer K, Hoffmann C, and Fromm M (2011) Double-transfected MDCK cells expressing human OCT1/MATE1 or OCT2/MATE1: determinants of uptake and transcellular translocation of organic cations. *Brit J Pharmacol* 163:546–555.

- Kubitza D, Becka M, Mueck W, Halabi A, Maatouk H, Klause N, Lufft V, Wand DD, Philipp T, and Bruck H (2010) Effects of renal impairment on the pharmacokinetics, pharmacodynamics and safety of rivaroxaban, an oral, direct Factor Xa inhibitor. *Brit J Clin Pharmaco* **70**:703–712.
- Kusuhara H, Ito S, Kumagai Y, Jiang M, Shiroshita T, Moriyama Y, Inoue K, Yuasa H, and Sugiyama Y (2011) Effects of a MATE Protein Inhibitor, Pyrimethamine, on the Renal Elimination of Metformin at Oral Microdose and at Therapeutic Dose in Healthy Subjects. *Clin Pharmacol Ther* 89:837–844.
- Lacey LF, Hussey EK, and Fowler PA (1995) Single dose pharmacokinetics of sumatriptan in healthy volunteers. *Eur J Clin Pharmacol* **47**:543–548.
- Lechner C, Ishiguro N, Fukuhara A, Shimizu H, Ohtsu N, Takatani M, Nishiyama K, Washio I, Yamamura N, and Kusuhara H (2016) Impact of Experimental Conditions on the Evaluation of Interactions between Multidrug and Toxin Extrusion Proteins and Candidate Drugs. *Drug Metab Dispos* 44:1381–1389.
- Li Q, Guo D, Dong Z, Zhang W, Zhang L, Huang S-M, Polli JE, and Shu Y (2013) Ondansetron can enhance cisplatin-induced nephrotoxicity via inhibition of multiple toxin and extrusion proteins (MATEs). *Toxicol Appl Pharmacol* **273**:100–109.
- Li Q, Yang H, Guo D, Zhang T, Polli JE, Zhou H, and Shu Y (2016) Effect of Ondansetron on Metformin Pharmacokinetics and Response in Healthy Subjects. *Drug Metab Dispos* 44:489–494.
- Lowry OH, Rosebrough NJ, Farr AL, and Randall RJ (1951) Protein measurement with the Folin phenol reagent. *J Biol Chem* **193**:265–75.
- Martínez-Guerrero L. J., Evans KK, Dantzler WH, and Wright SH (2016) The multidrug transporter MATE1 sequesters OCs within an intracellular compartment that has no influence on OC secretion in renal proximal tubules. *Am J Physiol-Ren Physiol* **310**:F57– F67.
- Martínez-Guerrero Lucy J., Morales M, Ekins S, and Wright SH (2016) Lack of Influence of Substrate on Ligand Interaction with the Human Multidrug and Toxin Extruder, MATE1. *Mol Pharmacol* 90:254–264.

- Masuda S, Terada T, Yonezawa A, Tanihara Y, Kishimoto K, Katsura T, Ogawa O, and Inui K (2006) Identification and Functional Characterization of a New Human Kidney–Specific H+/Organic Cation Antiporter, Kidney-Specific Multidrug and Toxin Extrusion 2. J Am Soc Nephrol 17:2127–2135.
- Mathialagan S, Piotrowski MA, Tess DA, Feng B, Litchfiled J, and Varma MV (2017) Quantitative prediction of human renal clearance and drug-drug interactions of organic anion transporter substrates using in vitro transport data. *Drug Metab Dispos* 45:409-417.
- Miyake T, Kimoto E, Luo L, Mathialagan S, Horlbogen LM, Ramanathan R, Wood LS, Johnson JG, Le VH, Vourvahis M, Rodrigues AD, Muto C, Furihata K, Sugiyama Y, and Kusuhara H (2021) Identification of Appropriate Endogenous Biomarker for Risk Assessment of Multidrug and Toxin Extrusion Protein-Mediated Drug-Drug Interactions in Healthy Volunteers. *Clin Pharmacol Ther* **109**:507–516.
- Miyake T, Mizuno T, Takehara I, Mochizuki T, Kimura M, Matsuki S, Irie S, Watanabe N, Kato Y, Ieiri I, Maeda K, Ando O, and Kusuhara H (2019) Elucidation of N1methyladenosine as a Potential Surrogate Biomarker for Drug Interaction Studies Involving Renal Organic Cation Transporters. *Drug Metab Dispos* 47:1270–1280.
- Morrissey KM, Stocker SL, Wittwer MB, Xu L, and Giacomini KM (2013) Renal Transporters in Drug Development. *Pharmacol Toxicol* **53**:503–529.
- Motohashi H, and Inui K (2013) Multidrug and toxin extrusion family SLC47: Physiological, pharmacokinetic and toxicokinetic importance of MATE1 and MATE2-K. *Mol Aspects Med* **34**:661–668.
- Müller F, König J, Hoier E, Mandery K, and Fromm MF (2013) Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. *Biochem Pharmacol* **86**:808–815.
- Müller F, Pontones CA, Renner B, Mieth M, Hoier E, Auge D, Maas R, Zolk O, and Fromm MF (2015) N1-methylnicotinamide as an endogenous probe for drug interactions by renal cation transporters: studies on the metformin–trimethoprim interaction. *Eur J Clin Pharmacol* **71**:85–94.

- Müller F, Weitz D, Derdau V, Sandvoss M, Mertsch K, König J, and Fromm MF (2017) Contribution of MATE1 to Renal Secretion of the NMDA Receptor Antagonist Memantine. *Mol Pharmaceut* 14:2991–2998.
- Nakada T, Kudo T, Kume T, Kusuhara H, and Ito K (2019) Estimation of changes in serum creatinine and creatinine clearance caused by renal transporter inhibition in healthy subjects. *Drug Metab Pharmacokinet* **34**:233–238.
- Nakada T, Kudo T, Kume T, Kusuhara H, and Ito K (2018) Quantitative analysis of elevation of serum creatinine via renal transporter inhibition by trimethoprim in healthy subjects using physiologically-based pharmacokinetic model. *Drug Metab Pharmacok* **33**:103–110.
- Nies AT, Damme K, Kruck S, Schaeffeler E, and Schwab M (2016) Structure and function of multidrug and toxin extrusion proteins (MATEs) and their relevance to drug therapy and personalized medicine. *Arch Toxicol* **90**:1555–1584.
- Nussbaum JC, Hussain A, Ma B, Min KC, Evers R, Li Y, Garrett G, Stoch SA, and Iwamoto M (2022) Assessment of the Effect of Pyrimethamine, a Potent Inhibitor of Multidrug and Toxin Extrusion Protein 1/2K, on the Pharmacokinetics of Gefapixant (MK-7264), a P2X3 Receptor Antagonist. *Clin Pharm Drug Dev* **11**:123–128.
- Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, and Moriyama Y (2005) A human transporter protein that mediates the final excretion step for toxic organic cations. *Proc National Acad Sci* **102**:17923–17928.
- Prasad B, Johnson K, Billington S, Lee CA, Chung GW, Brown CDA, Kelly E, Himmelfarb J, and Unadkat JD (2016) Abundance of drug transporters in the human kidney cortex as quantified by quantitative targeted proteomics. *Drug Metab Dispos* **44**:1920-1924.
- Saad AAA, Zhang F, Mohammed EAH, and Wu X (2022) Clinical Aspects of Drug–Drug Interaction and Drug Nephrotoxicity at Renal Organic Cation Transporters 2 (OCT2) and Multidrug and Toxin Exclusion 1, and 2-K (MATE1/MATE2-K). *Biological Pharm Bulletin* 45:382–393.
- Saito A, Ishiguro N, Takatani M, Bister B, and Kusuhara H (2021) Impact of direction of transport on the evaluation of inhibition potencies of multidrug and toxin extrusion protein 1 (MATE1) inhibitors. *Drug Metab Dispos* 49:152-158

- Saito A, Tomoko Kito, Ishiguro N, Takatani M, Takashi Kudo, Bister B, and Kusuhara H (2023) Impact of direction of transport on the evaluation of substrate recognition of mouse multidrug and toxin extrusion protein 1. *Drug Metab Dispos* 51:583-590
- Sauzay C, White-Koning M, Hennebelle I, Deluche T, Delmas C, Imbs DC, Chatelut E, and Thomas F (2016) Inhibition of OCT2, MATE1 and MATE2-K as a possible mechanism of drug interaction between pazopanib and cisplatin. *Pharmacol Res* 110:89–95.

Scheen AJ (2011) A review of gliptins in 2011. Expert Opin Pharmaco 13:81–99.

- Shingaki T, Hume WE, Takashima T, Katayama Y, Okauchi T, Hayashinaka E, Wada Y, Cui Y, Kusuhara H, Sugiyama Y, and Watanabe Y (2015) Quantitative Evaluation of mMate1 Function Based on Minimally Invasive Measurement of Tissue Concentration Using PET with [11C]Metformin in Mouse. *Pharmaceut Res* 32:2538–2547.
- Somogyi A, Stockley C, Keal J, Rolan P, and Bochner F (1987) Reduction of metformin renal tubular secretion by cimetidine in man. *Brit J Clin Pharmaco* **23**:545–551.
- Song IH, Zong J, Borland J, Jerva F, Wynne B, Zamek-Gliszczynski MJ, Humphreys JE, Bowers GD, and Choukour M (2016) The Effect of Dolutegravir on the Pharmacokinetics of Metformin in Healthy Subjects. *JAIDS J Acquir Immune Defic Syndr* 72:400–407.
- Stocker SL, Morrissey KM, Yee SW, Castro RA, Xu L, Dahlin A, Ramirez AH, Roden DM, Wilke RA, McCarty CA, Davis RL, Brett CM, and Giacomini KM (2013) The Effect of Novel Promoter Variants in MATE1 and MATE2 on the Pharmacokinetics and Pharmacodynamics of Metformin. *Clin Pharmacol Ther* **93**:186–194.
- Tanihara Y, Masuda S, Sato T, Katsura T, Ogawa O, and Inui K (2007) Substrate specificity of MATE1 and MATE2-K, human multidrug and toxin extrusions/H+-organic cation antiporters. *Biochem Pharmacol* 74:359–371.
- Terada T, and Inui K (2008) Physiological and pharmacokinetic roles of H+/organic cation antiporters (MATE/SLC47A). *Biochem Pharmacol* **75**:1689–1696.
- Tfelt-Hansen P, Vries PD, and Saxena PR (2000) Triptans in Migraine. Drugs 60:1259–1287.

- Thomas JA, Buchsbaum RN, Zimniak A, and Racker E (1979) Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ. *Biochemistry* **18**:2210–2218.
- Tsuda M, Terada T, Mizuno T, Katsura T, Shimakura J, and Inui K (2009) Targeted Disruption of the Multidrug and Toxin Extrusion 1 (Mate1) Gene in Mice Reduces Renal Secretion of Metformin. *Mol Pharmacol* 75:1280–1286.
- Tubic M, Wagner D, Spahn-Langguth H, Bolger MB, and Langguth P (2006) In Silico Modeling of Non-Linear Drug Absorption for the P-gp Substrate Talinolol and of Consequences for the Resulting Pharmacodynamic Effect. *Pharmaceut Res* 23:1712–1720.
- Varma MV, Steyn SJ, Allerton C, and El-Kattan AF (2015) Predicting Clearance Mechanism in Drug Discovery: Extended Clearance Classification System (ECCS). *Pharmaceut Res* 32:3785–3802.
- Wang A, Dorso C, Kopcho L, Locke G, Langish R, Harstad E, Shipkova P, Marcinkeviciene J, Hamann L, and Kirby MS (2012) Potency, selectivity and prolonged binding of saxagliptin to DPP4: maintenance of DPP4 inhibition by saxagliptin in vitro and ex vivo when compared to a rapidly-dissociating DPP4 inhibitor. *Bmc Pharmacol* 12:2–2.
- Westphal K, Weinbrenner A, Giessmann T, Stuhr M, Franke G, Zschiesche M, Oertel R, Terhaag B, Kroemer HK, and Siegmund W (2000) Oral bioavailability of digoxin is enhanced by talinolol: Evidence for involvement of intestinal P-glycoprotein. *Clin Pharmacol Ther* 68:6–12.
- Wiebe ST, Giessmann T, Hohl K, Schmidt-Gerets S, Hauel E, Jambrecina A, Bader K, Ishiguro N, Taub ME, Sharma A, Ebner T, Mikus G, Fromm MF, Müller F, and Stopfer P (2020)
 Validation of a Drug Transporter Probe Cocktail Using the Prototypical Inhibitors Rifampin, Probenecid, Verapamil, and Cimetidine. *Clin Pharmacokinet* 59:1627–1639.
- Yokoo S, Yonezawa A, Masuda S, Fukatsu A, Katsura T, and Inui K-I (2007) Differential contribution of organic cation transporters, OCT2 and MATE1, in platinum agent-induced nephrotoxicity. *Biochem Pharmacol* **74**:477–487.
- Yonezawa A, and Inui K (2011) Importance of the multidrug and toxin extrusion MATE/SLC47A family to pharmacokinetics, pharmacodynamics/toxicodynamics and pharmacogenomics. *Brit J Pharmacol* **164**:1817–1825.

- Yonezawa A, and Inui K (2011) Organic cation transporter OCT/SLC22A and H+/organic cation antiporter MATE/SLC47A are key molecules for nephrotoxicity of platinum agents. *Biochem Pharmacol* **81**:563–568.
- Yoshida K, Maeda K, and Sugiyama Y (2013) Hepatic and Intestinal Drug Transporters: Prediction of Pharmacokinetic Effects Caused by Drug-Drug Interactions and Genetic Polymorphisms. *Pharmacol Toxicol* 53:581–612.
- Zack J, Berg J, Juan A, Pannacciulli N, Allard M, Gottwald M, Zhang H, Shao Y, Ben-Yehuda O, and Jochelson P (2015) Pharmacokinetic drug–drug interaction study of ranolazine and metformin in subjects with type 2 diabetes mellitus. *Clin Pharmacol Drug Dev* **4**:121–129.