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Geometric Aspects of Gauge Algebroids
and T-duality in String Theory

分子科学専攻 量子物理学
DS-20902 森 遥

現代物理において，初期宇宙は非常に小さく，かつ高エネルギーであったとされる．そ
の時空構造を紐解くことは，興味深い問題のひとつである．現在の宇宙の様子，すなわちマ
クロな時空の構造は一般相対性理論によって記述されるが，この理論には適用限界がある．
高エネルギー領域でのミクロな時空を記述するには一般相対性理論の拡張を行い，量子重力
理論を構築する必要がある．量子重力理論の最有力候補が超弦理論である．
超弦理論では，プランク長 (10−34m)の弦を用いて時空の構造を調べる．また，超弦理論

には無矛盾だが一見すると異なる枠組みが 5つ存在し，それらはいくつかの双対性を通して
結びつく．特に，T双対性は弦がコンパクトな空間に巻きつくことに由来する，弦理論に特
有な双対性である．T双対性は理論同士の関係を示すものであり，超弦理論ではあらわに見
ることができない．近年，双対性に着目した重力理論がいくつか提唱されており，これらは
総称して Extended Field Theory (ExFT)と呼ばれる．その中でも，Double Field Theory
(DFT)は，T双対性に着目した新しい重力理論である．DFTの特徴は，通常の物理的な空
間を表す x座標系と，弦の巻き付きに由来する x̃座標系のふたつを持った，倍化された座標
上で定義されていることである．これは端的に言えば，弦の巻きつきによる効果を考慮する
形で一般相対性理論を拡張したものと思ってよい．この座標系のもとで，T双対性は xと x̃

の入れ替えとして明示される．また，時空の自由度を増やしたことと引き換えに，DFTは
拘束条件をもつ．この条件は，倍化された空間から，通常の物理的な空間を選択する意味合
いがある．
一般相対性理論が，リーマン幾何学を用いて定式化されたように，時空構造を理解する上

で，幾何学と重力理論は密接に関係する．DFTも背景になんらかの幾何学的描像をもってい
るべきであるが，先に述べたような x座標と x̃座標が共存する DFTの座標系は，リーマン
幾何学では記述しきれない．このような空間の幾何学は，倍化幾何学 (doubled geometry)と
呼ばれ，para-Hermitian幾何学や Born幾何学などと関連している．DFTに対しての倍化幾
何学に限らず，一般に ExFTに対する幾何学的な描像が考察されており，これらは extended
geometryと呼ばれている．
本論文では，DFTという理論が持つ局所対称性に注目して，DFTの理論構造やその幾

何学について議論する．一般的には，ある理論が局所対称性を持つならば，それは数学的に
は群の代数構造と関連する．ところが，DFTの局所対称性からは，代数構造ではなく，そ
の一般化である亜代数 (algebroid)構造が現れることが知られている．まずは，亜代数のも
つ直和構造について明らかにする．また，DFTの構造から，亜代数の twistと呼ばれる変形
についても議論する．これは，量子群の分野でよく知られた，Hopf代数の Drinfel’d double
の拡張として解釈される．また，この構造を倍化された空間の上で具体的に明示する．これ
よりDFTの持つ拘束条件の代数的な起源は，亜代数がもつ直和構造から明らかになること
がわかった．
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Abstruct

In modern physics, it is known that the search for the fundamental unit of matter leads
to elementary particles. In the field of elementary particles, there are four fundamental
interactions: the electromagnetism, the weak interaction, the strong interaction, and the
gravity. We need a new framework in which gravity and quantum theory coexist to under-
stand physics on a microscopic scale. For example, this framework is needed to consider the
early universe or a singularity in a black hole at close range.

Currently, superstring theory is the most promising candidate for a quantum gravity
theory. There are five consistent string theories. The five string theories are connected by
string duality. While “symmetry” refers to the invariance of the laws of physics within a
single theory, “duality” refers to the fact that two seemingly different theories are actually
physically equivalent. T-duality is one of the dualities that arise when a string has length
and winds around a compactified space. As long as one focuses on a string theory, it is not
possible to investigate T-duality explicitly.

Recently, a new gravity theory has been developed which has T-duality as “symmetry”.
This is called Double Field Theory (DFT). It is defined on a doubled space, which contains
not only the ordinary spacetime coordinate x (Fourier conjugate of Kalza-Klein momentum)
but also the winding coordinate (Fourier conjugate of the string winding modes). DFT is a
T-duality covariant reformulation of the supergravity.

Historically, gravity theory and geometry are closely related. The most famous theory
describing classical gravity is Einstein’s general relativity. The breakthrough of the general
theory of relativity is that it considers mass as a distortion of space. Riemannian geometry
played an important role in this theory. Just as general relativity was formulated in Rie-
mannian geometry, DFT (and doubled geometry) are assumed to have some mathematical
geometric pictures. However, it also suggests a new geometry that is completely different
from Riemannian geometry.

We are interested in the theoretical (mathematical) structure of DFT. DFT has the
strong constraint for consistency. We discuss the mathematical origin of the constraint to
focus on the gauge symmetry in DFT. There are various interesting mathematical structures
that do not appear in ordinary physics.
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1 | Introduction

Physical requirements trigger the development of mathematics. Mathematics also plays an
important role in the development of physics. For example, Newton introduced differential
and integral calculus, in particular higher-order derivatives and Taylor series. These later be-
came the basis of mathematical analysis. The reason for the introduction of these mathemat-
ical notions was to describe the classical laws of physics. The fundamental book on classical
mechanics known as “The Mathematical Principles of Natural Philosophy (Philosophiæ-
Naturalis Principia Mathematica)” was published by Newton in 1687. In this book, the
three laws of motion and universal gravitation are discussed mathematically. Subsequently,
differential and integral calculus were systematically established by Leibnitz et al. One of
Newton’s achievements is the approach of “replacing a natural phenomenon into a mathe-
matical problem and solving it” itself.

One of the most obvious examples of the connection between mathematics and physics
is gravity. Gravity is a very familiar force for us. The existence of gravity itself has long
been recognized, as the Newton apple anecdote shows. The most famous theory describing
classical gravity is probably Einstein’s general relativity [1]. The breakthrough of general
relativity is that it considers mass as a curved space. Riemannian geometry played an
important role in describing this theory. This geometry generalizes the concept of parallelism
to curved spaces by introducing the concept of connection. The characteristic of Riemannian
geometry is that it gives concrete quantities (or objects) such as curvature and torsion that
give space its shape. Thus, gravity theory and geometry are closely related. Another
important concept in general relativity is symmetries. This theory is based on the principle
of relativity, i.e., that all physical laws are invariant (symmetric) under general coordinate
transformations. The general coordinate transformations are represented by the GL(3, 1)

group, and physical laws are described based on this symmetry.
Today, general relativity is well known as the classical theory describing gravity. It has

been corroborated with great precision from an experimental point of view. These include
pulsar timing measurements [2], the problem of Mercury’s perihelion [3], and more recently,
experimental confirmation of gravitational waves [4] and the imaging of black holes [5].
There is no doubt that on the macroscopic scale, the classical theory of general relativity is
sufficient.

In modern physics, it is well known that the fundamental objects are elementary par-
ticles. There are four types of forces, or interactions for elementary particles: electromag-
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netism, gravity, weak interaction, and strong interaction. The weak interaction is related
to β decay, the radioactive decay of nuclei. The same strong interaction binds protons
and neutrons together to form a nucleus. These quantum interactions are described by
Quantum Field Theory (QFT). An important aspect of QFT is the existence of the gauge
group, which describes the symmetry of elementary particles. In the four interactions, the
electromagnetism was the first to be successfully quantized. The quantization of the elec-
tromagnetic field was first realized by Dirac in 1927 [6]. Later, Fermi formulated Quantum
Electrodynamics (QED) to the first-order of perturbation theory [7] . The success of QED
prompted the formulation of other interactions using QFT. Subsequently, the strong and
weak interactions were described theoretically by extending the symmetry from Abelian
group to non-Abelian group. Glashow-Weinberg-Salam’s theory gives a unified description
of the weak interaction and the electromagnetism [8–10]. This electroweak unified theory
is a gauge theory with gauge group SU(2)× U(1) . This gauge symmetry is spontaneously
broken to U(1), the gauge group of QED, by the Higgs mechanism [11–13]. The strong
interaction is described by Quantum Chromodynamics (QCD), a non-Abelian gauge theory
based on SU(3) symmetry. The basic theoretical structure of QCD was proposed by Yang
and Mills in 1954 [14]. Thus, it is clear that group structure and algebraic structure are
important concepts governing symmetry even on the microscopic scale.

Glashow-Weinberg-Salam’s theory and QCD together are called the Standard Model
(SM). On the other hand, the behavior of elementary particles has been experimentally
verified using particle colliders. New particles are produced in particle collisions with ap-
propriately high energy at the center of mass. Their properties, such as charge and mo-
mentum parameters, are analyzed by several detectors placed around the collision point.
From these data, the fundamental interactions between particles governed by QFT can be
reconstructed. QFT has been validated with high accuracy at least up to the current 13 TeV
energy scale obtained in proton collisions by the LHC. However, the SM is not perfect in
describing the interactions of elementary particles, because it does not incorporate gravity.
As mentioned at the beginning, general relativity gives a very clear description of gravity
on the macroscopic scale. On the other hand, we need other new theories in which grav-
ity and quantum theory coexist to understand physics on a microscopic scale. Currently,
superstring theory is considered the most promising candidate for a quantum gravity theory.

1.1 String theory

String theory was originally proposed to describe strong interactions and to classify hadrons
[15, 16]. The fundamental object of the theory is not a particle but a string with length.
The original feature of this theory was that the modes of vibration of this string represented
different hadrons. Nevertheless, there were some problems, such as the dimension of space-
time is 26 and that tachyon appeared as the lightest particles. After the development of
QCD in the 1970s, it was recognized that QCD was the correct theory to describe strong
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interactions, not string theory. However, it was pointed out that the spin-2 excitation in
relativistic closed strings is related to gravity [17–19] in 1974. String theory was once again
noticed as a possible candidate for a theory of quantum gravity. If we regard string theory
as a theory of gravity, then supersymmetry (SUSY) is required to treat fermions in string
theory. A string theory with SUSY is called superstring theory. If we consider superstring
theory as a theory of gravity, it has the following characteristics.

• Consistency in superstring theory requires that the spacetime dimension is 10.

• Massless spin-2 particle (graviton) appears in the spectrum of the theory.

• Discovery of the anomaly cancellation mechanism that allows gauge group SO(32) and
E8×E8. These groups include SU(3)×SU(2)×U(1) and are large enough to consider
parity breaking (required by electroweak interactions).

• The only artificial parameter is the string tension T . The coupling constant gs of the
dimensionless string is determined by the expectation value of the scalar field (dilaton).

• There are five equivalent theories (type IIA, type IIB, type I, SO(32) heterotic, E8×E8

heterotic).

In this thesis, we will use the term “string theory” simply to refer to superstring theory.
String theory without SUSY will be referred to as bosonic string theory.

Interactions in string theory occur in the extended region of spacetime that originates
from the length of the string. This is expected to prevent the point-particle divergence
inherent in QFT calculations and make string perturbation theory UV-finite. Strings have
Planck length lPl =

√
ℏG/c3 ∼ 10−35m. This is expressed using the fundamental constants

in the theory of gravity and quantum theory (In this thesis, we use the natural units,
c = ℏ = 1).

There are two kinds of strings. One is an open string, which has endpoints like fishing
lines. Another is a closed string, which does not have endpoints like rubber bands. The
oscillating modes of the string correspond to elementary particles in spacetime. In other
words, quantizing a relativistic string yields a generation operator. By applying them to
zero mode, states with various masses, i.e. particles, can be generated. The ground state
of the string corresponds to a tachyon, but as mentioned above, this mode is eliminated
in string theory. The first excited state of an open bosonic string is a photon-like massless
vector field. The first excited state of a closed bosonic string corresponds to a massless
second-order tensor field containing gravitons.

String theory lives in a region of high energy that experimental observation is impossible.
Higher-order excited states in string theory include massive particles. When considering
the current universe or macroscopic space, it is common to consider only the massless state,
where the length of the string ls is zero. This is called the low-energy effective theory of



14 | CHAPTER 1. INTRODUCTION
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Figure 1.1: The duality chain of string theories.

string theory. The closed string massless state can be divided into the symmetric part, the
anti-symmetric part, and the trace part of the second-order tensor. These correspond to
the gravity field, the Kalb-Ramond field, and the dilaton field, respectively. The equations
of motion for these fields are obtained from the condition that the worldsheet anomaly of
conformal symmetry vanishes [20]. The theory giving these equations of motion is called
supergravity (SUGRA). Supergravity is an extension of general relativity in a way that
requires SUSY. In other words, the low-energy limit of string theory is supergravity.

The dimensions of string theory are too large, whereas our perceived spacetime is four-
dimensional. Thus, the question arises as to how to deal with the extra dimensions. One way
to deal with the extra dimensions is to curl up the space compact enough not to be detected
at low energies. This procedure is called compactification and originally comes from the
Kaluza-Klein (KK) theory [21, 22]. If the internal space of six dimensions is appropriately
chosen, compactification will yield a four-dimensional string theory.

There are five consistent string theories: type I, type IIA, type IIB, heterotic SO(32),
and heterotic E8 × E8. The type II and heterotic string theories are only closed string
theories, while type I contains both closed and open strings. The type II and heterotic
theories share a common bosonic subsector called the Neveu-Schwarz (NS-NS) sector. It
contains a metric gµν , an antisymmetric 2-form known as the Kalb-Ramond field Bµν , and
a scalar known as the dilaton ϕ. Also, type I is given by SO(32) for the gauge group,
and in heterotic string theory the type of string (in terms of whether it contains SUSY or
not) differs between left mover and right mover. The difference between IIA and IIB is
the chirality of the fermion. The five string theories are connected by string duality (fig
1.1). While “symmetry” refers to the invariance of the laws of physics within a theory,
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“duality” refers to the equivalence of the two seemingly different theories. For example, type
I theory with the coupling constant gs is equivalent to the SO(32) heterotic theory with
the coupling constant 1/gs. This duality is called S-duality [23]. S-duality also transfers
type IIB to type IIB itself. In addition, type IIA string theory is equivalent to type IIB
string theory with toroidal compactification [24, 25]. This duality is called T-duality [26].
Heterotic SO(32) string theory and E8 × E8 string theory are also related by T-duality.
Also, type I is known to be related to type I’ by T-duality, although this is not shown in
fig 1.1 [25, 27]. The existence of these string dualities suggests that the five string theories
are not different theories but describe different aspects of one mother theory. This theory is
called M-theory [28–31]. The low-energy limit of M-theory is 11-dimensional supergravity.
The U-duality [32], which combines S-duality and T-duality, is expected to be a complete
M-theory symmetry.

1.2 T-duality and related geometries

Let us now turn to T-duality. T-duality is the duality that arises when a string has length
and winds around a compactified space. Let α′ = l2s (α′ is called slope parameter). It was
Kikkawa-Yamasaki [24] and Sakai-Senda [25] who first observed that the spectrums of the
strings on a torus are equivalent under the interchange of radius R and α′/R. However,
as mentioned earlier, duality is a concept that indicates the relationship between theories.
As long as one focuses on a single string theory, it is not possible to investigate T-duality
explicitly.

The simplest example where T-duality appears is in a compactified spacetime S1 only in
the one-dimensional direction. Since the string is a one-dimensional object, it winds around
the compactified space S1. Let R be the radius of S1. The momentum p of the string in the
direction of S1 is p = m/R (m = 0,±1,±2, · · · is the KK-momentum). On the other hand,
energy is also generated by the string wrapping around S1. This is obtained by the product
of the string tension Ts = (2πα′)−1 and the circumference 2πR (assuming α′ = l2s and the
natural unit system ℏ = c = 1). This result contributes to the string mass spectrum M2

and can be written approximately as follows.

M2 ∝
( n
R

)2
+

(
mR

α′

)2

, n,m ∈ Z (1.1)

where n is an integer that indicates the number of times the string is wound. The first term
represents the momentum of the string and the second term represents the energy derived
from the tension of the string. The spectrum of this string becomes the same form under the
interchange of radius R⇔ α′/R as the string momentum m and the winding number n are
exchanged. The fact that the spectrum of the theory is invariant under this interchange is
called T-duality. It can be read that strings describe spacetime in a different way than point
particles. More generally, T-duality can be considered even when the compactification space
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is geometrically different from S1. For example, when the compactification space is a D-
dimensional torus TD, then T-duality is extended to the O(D,D,Z) group [33,34]. At least
in the low energy limit of supergravity with α′ → 0 (zero-slope limit), O(D,D,R) appears
as a T-duality group (anomaly breaks Z into R). Recall that “symmetry” was described by
algebra and groups in general relativity and QFT. Similarly, “duality” is essentially governed
by these structures. More generally, if we consider string theory (or even supergravity)
in a curved target space with isometry, T-duality can be interpreted as a map between
different backgrounds. This relation between backgrounds is known as the Buscher rule
[35,36]. The Bucher rule is a transformation in which the metric gµν and the Kalb-Ramond
field Bµν are treated equally and mixed with each other. Mathematically, T-duality ties
two completely different kinds of geometry. Just as general relativity was formulated in
Riemannian geometry, string theory is assumed to have some geometric picture. However,
it seems to suggest a new geometry that is completely different from Riemannian geometry.

A geometry related to T-duality is the generalized geometry proposed by Hitchin [37].
In the generalized geometry, on a manifold M , the generalized tangent bundle TM =

TM ⊕ T ∗M is introduced. In this geometry, the O(D,D) group, which is the same as the
T-duality group, becomes the symmetry group of the target space by introducing TM . This
makes it a very useful setup for studying string theory and its low-energy limit, supergravity.
Another characteristic feature of this geometry is the appearance of algebroid instead of
algebra [38,39]. To put it simply, an algebroid contains information on a manifold (or space-
time in physical terms), this is the main difference between an algebroid and algebra [40].
This structure appears as a result of mixing the usual diffeomorphism and B-field gauge
transformations and recombining them into an O(D,D)-covariant expression.

One of the physical applications of the generalized geometry is related to flux compacti-
fication [41]. The algebroid is deformable enough to incorporate a 3-form [42]. This 3-form
physically corresponds to the H-flux appearing in the NS-NS sector of type II supergravity.
From the conventional T-duality argument based on the Buscher rule, It is known that a
T-duality chain (H,F,Q,R) starting from H-flux appears. Here, H,F are called geometric
flux, and Q,R are called non-geometric flux. It is pointed out that “non-geometric” flux
can be treated geometrically by using the generalized geometry [43–45]. The relationship
with the non-linear sigma model has also been studied. The non-linear sigma model is a
scalar field theory with nonlinear coupling that describes string theory in a curved back-
ground. In its Hamiltonian form, the diffeomorphism and the gauge transformation of the
Kalb-Ramond field Bµν are a part of the canonical transformation on the phase space, not
a mere field transformation. The canonical transformation corresponds to a general coor-
dinate transformation on the phase space and can be regarded as a geometric symmetry of
the phase space. In fact, the generators of the diffeomorphism and the gauge transforma-
tion of the B-field in the Hamiltonian form are known to be in one-to-one correspondence
with the basic structures of the generalized geometry (generalized tangent bundle and al-
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gebroid as a gauge algebra, etc.) [46]. Gates-Hull-Rocek geometry discovered in the study
of 2D-dimentional non-linear sigma models with N = (2, 2) SUSY [47] (it is also called
bi-Hermitian geometry) and the generalized Kähler geometry defined in the framework of
the generalized geometry are also known to be equivalent [38,48].

Another geometry related to T-duality is the doubled geometry proposed by Hull [49].
As mentioned earlier, string duality, including T-duality, is a concept that indicates the
relationship between theories. Therefore, T-duality is not usually manifested as long as one
focuses on a single string theory. Doubled geometry is a new geometry developed under
the attempt to treat T-duality explicitly as a "symmetry" (this is called doubled formalism)
[50–53]. The geometry of doubled spacetime has been studied mainly by [54–58], in addition
to the one by Hull mentioned above. Other relevant discussions are mainly [59–62]. Here,
the concept of a duality symmetric sigma model was given, in which the target space is
doubled in order to make T-duality a symmetry. In particular, in superspace, the full action
of the T-duality symmetry of the low-energy effective theory of superstring theory is given
in [51, 52]. As a further development of these theories, there exists a field theory on the
doubled geometry, the Double Field Theory, which will be introduced below.

1.3 Double Field Theory

Double Field Theory (DFT) [63] is a field theory defined in the doubled space. DFT is
constructed by the discussion in the doubled geometry and String Field Theory (SFT) [64,
65]. The D-dimentional flat SFT of a closed string with torus compactification is discussed
in [65–67]. In particular, it was shown in [65] that T-duality is realized as a “symmetry” of
the SFT. In SFT, momentum m and winding number n are equivalent. From the Fourier
Conjugate, in addition to the usual physical coordinate x for momentum, a new coordinate x̃
corresponding to the number of windings appears. The x̃ is called the winding coordinate. T-
duality corresponds to the interchange of momentum m and winding number n, as described
above. It appears the interchange of x and x̃ in coordinate space. Therefore, to make T-
duality explicit as a “symmetry”, we adopt both x and x̃ as coordinates at the same time,
and double the degrees of freedom. That is, in an originally D-dimensional theory, when
n-dimensions are toroidal compactified, the theory is constructed on M × T 2n. Here, M
is the Minkowski spacetime in (D − n) dimension and T 2n is the doubled torus T n × T n

of the compactified space. Thus, DFT is a field theory that depends on both the normal
coordinate x and the winding coordinate x̃.

Based on the above discussion, the currently well-studied DFT is defined on a doubled
spacetime in 2D dimensions. This is achieved by doubling the all space, not just the com-
pactified space. The value of D is arbitrary, but since the origin of DFT is SFT, D = 10 is
often assumed. Since the DFT that is currently well studied is based on the type II theory,
it contains gµν , the Kalb-Ramond field Bµν , and the dilaton ϕ. In this sense, it is sometimes
called type II DFT to distinguish it from the heterotic DFT described below. The type II
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DFT can be said to be a T-duality (O(D,D,R) group) covariant reformulation of the type
II supergravity. All these fundamental fields are recombined as T-duality covariant fields
on the doubled spacetime. For example, gµν and Bµν are treated as a unified generalized
metric. DFT actions are composed of the generalized metric and the rescaled DFT dilaton.
DFT actions are invariant by the T-duality group. DFT action is also invariant by gener-
alized diffeomorphism by a generalized Lie derivative. The generalized Lie derivative is an
extension of the Lie derivative in Riemannian geometry. It is generated by vectors defined
on doubled spacetime. The generalized Lie derivative is governed by the C-bracket. DFT
also has a constraint condition for consistency. This is the closure condition of the gauge
algebra which is described by the C-bracket.

The equations of motion of DFT are written in O(D,D)-covariant form, which is an
extension of the Einstein equation in doubled spacetime. Solutions to DFT are discussed
in [68]. In this sense, DFT can also be interpreted as a low-energy effective theory of string
theory [69–71]. It should be noted, however, that these formulations are only local. As there
is Riemannian geometry for general relativity, a framework of the “global” doubled geometry
is needed so that the elements for constructing the DFT (generalized metric, operations such
as generalized Lie derivative, or algebroid structure) can be defined globally.

One of the approaches to consider the global formulation of DFT is the para-Hermitian
geometry [72–75]. The para-Hermitian structure is the combination of the para-complex
structure and the O(D,D) metric. A manifold with this structure is called a para-Hermitian
manifold, and it is known that the structure of doubled spacetime appears naturally. Also,
as a generalization of the para-Hermitian geometry, Born geometry exists [74,76]. The born
structure is a para-Hermitian structure plus a Riemannian structure H. The sigma model
based on Born geometry is discussed in [77, 78]. The relationship between Born geometry
and the generalized geometry (generalized Kähler structure) is discussed in [79].

From figure 1.1, we can see that T-duality also exists among heterotic strings. Naturally,
it is possible to consider a heterotic theory as “DFT”. Heterotic DFT was first formulated
by Hohm-Kwak [82], and also discussed in these papers [80,81]. At present, it is known that
ten-dimensional heterotic SUGRA action can be obtained from heterotic DFT action [83].
The relation with the heterotic sigma model is discussed in [84]. In addition to the type II
DFT components (metric gµν , the Kalb-Ramond field Bµν , and the dilaton ϕ), the gauge
field Aµ

a is contained in the heterotic DFT, The characteristic point of the heterotic DFT
is that the doubled spacetime is extended again by the freedom of this gauge field. The
geometry of the heterotic DFT is discussed, for example, in [80]. There is a problem with
how to deal (globally) with the space re-extended by the gauge field, which is even more
unclear compared to the type II DFT. The geometry of “DFT” is still under development.

As we have mentioned, behind T-duality and DFT, which is a symmetry of the theory,
there are hidden various mathematical objects that do not appear in conventional physics.
On the other hand, it goes without saying that studying these structures is essential to
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understanding the world seen by string, i.e., the origin of the universe and the interior of
black holes.

1.4 Outline of the thesis

In this thesis, we investigate the gauge algebra of DFT, focusing on the algebroid given
by the C-bracket. In particular, we investigate the theoretical structure of DFT in the
framework of the para-Hermitian geometry.

The contents of this thesis are based on [84–86]. In particular, a part of Chapter 2 is
based on [84], Section 3.4 to Section 3.7 are based on [85, 86], Section 4.2 is based on [85],
and the discussion in Chapter 5 is based on [85, 86]. Complementary content other than
the above is taken from the publications listed in Bibliography. This thesis is organized as
follows.

In Chapter 2, we review Double Field Theory, a field theory covariant with T-duality.
First, we introduce the most basic type II DFT action. Next, we consider the generalized
Lie derivative and the gauge symmetry of type II DFT. The gauge symmetry is described
by the C-bracket. We discuss the section constraints for consistency in DFT. The strong
constraint is the closure condition of the gauge algebra described by the C-bracket. An
introduction to Heterotic DFT will also be given in this section.

In Chapter 3, we introduce two important concepts for studying gauge algebra in DFT.
The first is the concept of Drinfel’d double. The Drinfel’d double is simply the operation of
taking a direct sum over two dual Lie algebras. The second is the algebroid structure. The
most basic algebroid structure is the Lie algebroid. This is simply an extension of the Lie
algebra structure to vector bundles on a manifold M . By preparing a dual vector bundle and
introducing two Lie algebroids, Drinfel’d double can be performed on those Lie algebroids
under the compatibility condition. This compatibility condition is called the derivation
condition. By analogy with Drinfel’d double of Lie algebroid, we show various algebroid
structures also have a doubled structure [85, 86]. Especially, the Vaisman algebroid which
is described by the C-bracket has a doubled structure. This structure is very important to
find the origin of strong constraints.

In Chapter 4, we describe the framework of the generalized geometry and the doubled
geometry, which are related to T-duality. The feature of the generalized geometry is that it
introduces a generalized tangent bundle TM = TM⊕T ∗M that is a direct sum of the tangent
bundle TM and the cotangent bundle T ∗M . Since the symmetry group of this geometry
is especially compatible with supergravity. The doubled geometry, the geometry of DFT,
is also described. This geometry is fundamentally different from the generalized geometry
because it doubles the degrees of freedom of the underlying base space (manifold) itself.
Doubled geometry is related to the para-Hermitian geometry and the Born geometry. Then,
we present the para-Hermitian manifold M, which will be necessary for later discussion.
The relationship between the generalized geometry and the para-Hermitian geometry is also
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discussed.
In Chapter 5, we investigate the origin of the strong constraint, which is the consistency

condition of DFT. For this purpose, we use the algebroid structures introduced in the
previous chapters. The Vaisman algebroid discussed in Chapter 3 is reproduced on the
para-Hermitian geometry introduced in Chapter 4. First, the exterior derivatives which are
necessary to give the Lie algebroids on a para-Hermitian geometry. Then, we discuss the
algebraic origin of the DFT constraints by considering the double of the Lie algebroids. We
also implement the other algebroid structures discussed in Chapter 3 in the same way.

In Chapter 6, we summarize this thesis and discuss the future outlook.
Appendix A contains all the calculations used to prove the doubled structures for various

algebroids, including the Vaisman algebroid, which is the subject of this thesis.
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2 | Double Field Theory

A field theory defined on a 2D-dimensional doubled space which is the pair of the usual
momentum coordinate x combined with the winding coordinate x̃ is called a Double Field
Theory (DFT). The field theory defined on a 2D-dimensional doubling space is called Double
Field Theory (DFT) [63]. Historically, DFT was constructed bottom-up using SFT, but it is
also a recasting of SUGRA into a T-duality covariant. The DFT includes the gauge gµν , the
Kalb-Ramond field (B field) Bµν , and the dilaton ϕ as massless fields. The gauge algebra
in DFT is represented by C-bracket and is a mixture of general coordinate transformations
of the metric and U(1) gauge transformations of the B-field.

We will leave all the mathematical background for later chapters. In this chapter, we
construct DFT (in a sort of descent), which is a physical motivation to think about T-duality
and related geometry. Instead, we will add annotations as appropriate to show where it is
related to the later chapters of this paper, and this chapter should be used as a guide
when reading this paper. First, we introduce the doubled spacetime, and also introduce the
fundamental field of the type II DFT. This basic field is used to give the type II DFT action.
We also discuss the properties of the C-bracket governing the generalized Lie deirivative.
We discuss the constraints that hold for the DFT. We also consider the heterotic DFT set
up.

2.1 Type II DFT action

DFT is defined on 2D-dimensional spacetime. Moreover, it is not just an ordinary space-
time with even dimensions, but doubled spacetime. The doubled spacetime coordinate
system XM consists of the usual momentum coordinate xµ, which is Fourier conjugate to
the KK-mode of the string, and The doubled spacetime coordinate system XM is real-
ized by equivalently combining the string’s winding number and Fourier conjugate winding
coordinate x̃µ, as follows.

XM =

(
x̃µ

xµ

)
, (M = 1, . . . , 2D; µ = 1, . . . , D). (2.1)

Taking T-dual corresponds to interchanging xµ and x̃µ. Naturally, every object on doubled
spacetime is a “doubled quantity”. For example, for any vector on a doubled spacetime (let
us call it a doubled vector) V M is written by a summation of the part vµ that depends on
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xµ and the part ṽµ that depends on x̃µ, as follows.

V M = vµ∂µ + ṽµ∂̃
µ. (2.2)

However, once the basis of doubled spacetime is written as follows.

∂M =
∂

∂xM
=

(
∂̃µ

∂µ

)
, ∂µ =

∂

∂xµ
, ∂̃µ =

∂

∂x̃µ
. (2.3)

We also introduce the following O(D,D) invariant metric for doubled spacetime.

ηMN =

(
0 1

1 0

)
, ηMN =

(
0 1

1 0

)
. (2.4)

O(D,D) metric is an neutral metric. Raising or lowering the index of any doubled tensor
is done by this O(D,D) metric. A para-Hermitian manifold can be naturally realized by
adopting such a doubled spacetime setup, which will be discussed in Chapter 4. In this
chapter, it is sufficient to note that the coordinates derived from the winding mode x̃ and
the coordinates derived from the KK-momentum xphysically coexist. There is no problem
if we only keep in mind that winding mode-derived coordinates and KK-momentum-derived
coordinates coexist physically.

Then, under this basis, we introduce a fundamental dynamical field on the doubled
spacetime that appears in the DFT. There are two fundamental dynamical fields in the
DFT: the generalised scalar (DFT dliaton) d(X) and the generalised metric HMN(X). The
generalized metric has the O(D,D) constraint as follows.

HMN = ηMKηNLHKL. (2.5)

HMN is parametrized in the coset space O(D,D)/(O(D)×O(D)) as follows [87]．

HMN =

(
gµν −gµρBρν

Bµρg
ρν gµν − Bµρg

ρσBσν

)
. (2.6)

The DFT dilaton is parametrized as

e−2d =
√
−ge−2ϕ. (2.7)

Note that g is the determinant of the metric.
The O(D,D)-invariant DFT action is given by the generalized Ricci scalar R as follows

[87].

SDFT =

∫
d2Dx e−2dR(H, d), (2.8)

R =
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL

+ 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md ∂Nd+ 4∂MHMN∂Nd. (2.9)

Here，d2Dx = dDxdDx̃. The R is called generalized Ricci scalar.
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2.2 Generalized Lie deivative and gauge symmetry

We introduce the generalized Lie deivative L̂. For any doubled scalar f and doubled vector
V M , it acts as follows

L̂Ξf = ΞM∂Mf, (2.10)

L̂ΞV
M = ΞN∂NV

M − (∂MΞK − ∂KΞ
M)V K . (2.11)

where the doubled gauge parameter is ΞM . Also, generalized Lie deivative acts on the scalar
density scalar density f and vector density v of the weight ω [88]．

L̂Ξf = ΞM∂M f+ ωfΞM∂M , (2.12)

L̂Ξv
M = ΞN∂Nv

M − (∂MΞK − ∂KΞ
M)vK + ωvK∂MΞM . (2.13)

Therefore，in general, L̂ for the n-tensor TM1M2···Mn of the weight ω defined as

L̂ΞT
M1M2···Mn = ΞN∂NT

M1M2···Mn + ωTM1M2···Mn∂MΞM

+
n∑
i=1

(∂MiΞK − ∂KΞ
Mi)TM1M2···MK ···Mn . (2.14)

We discuss some more properties of L̂．L̂ is linear to the parameter Ξ. That is, when
L̂ acts on the arbitary tensor product T1T2, it becomes L̂Ξ(T1T2) = (L̂ΞT1)T2 + T1(L̂ΞT2).
There the distributive law is satisfied. また，L̂ acts on O(D,D) metric as

L̂Ξη
MN = L̂ΞηMN = 0. (2.15)

If L̂Ξ is a Lie derivative on doubled spacetime, the gauge parameter Ξ is a Killing vector
for the O(D,D) metric. Unlike the usual gauge transformation, the generalised gauge trans
formation for doubled 1-forms can be given by a foot change up or down by ηMN .

L̂ΞVM = L̂ΞηMNV
N

= ΞN∂NVM − (∂MΞK − ∂KΞM)VK . (2.16)

Using the weight of H is 0 and the weight of e−2d = 1，generalized Lie derivative L̂ of
generalized metric H and generalized dilaton d as

L̂ΞHMN = ΞK∂KHMN + (∂MΞK − ∂KΞM)HKN + (∂NΞ
K − ∂KΞN)HMK , (2.17)

L̂Ξe
−2d = ΞK∂Ke

−2d + e−2dΞK∂K . (2.18)

Recalling the general relativity, the Lie derivative of a vector in normal spacetime can be
expressed using a Lie bracket (commutator). As an analogy, we define a new bracket on
the doubled space from the generalized Lie derivative as follows. This bracket is called
D-bracket.

[Ξ1,Ξ2]
M
D = L̂Ξ1Ξ

M
2 . (2.19)
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D-bracket is a bilinear map for Ξ1,Ξ2, but it is a symmetric bracket. This bracket is shifted
as follows when compared with the mere commutator [Ξ1,Ξ2] = ΞN1 ∂NΞ

M
2 − ΞN2 ∂NΞ

M
1 (

Intuitively, the commutator seems to be a “doubled Lie bracket” with doubled vectors ).

[Ξ1,Ξ2]
M
D = [Ξ1,Ξ2] + ∂MΞN1 Ξ2N

= [Ξ1,Ξ2] + ηMKηNL∂KΞ
N
1 Ξ

L
2 . (2.20)

Since the ordinary Lie bracket is anti-symmetic, it can be seen that the D-bracket is essen-
tially different from the Lie bracket.

We further investigate the properties of D-brackets. In general, if a symmetric bracket
satisfies the Leibniz identity, it becomes a Leibnitz algebra [89,90]. We check Leibniz identity
for the D-bracket. First, we calculated following terms.

LD (Ξ1,Ξ2,Ξ3) = [Ξ1, [Ξ2,Ξ3]D]D −
(
[[Ξ1,Ξ2]D ,Ξ3]D + [Ξ2, [Ξ1,Ξ3]D]D

)
. (2.21)

If LD = 0, the D-bracket satisfies Leibniz identity. However, There are non-zero terms
remain.

LD (Ξ1,Ξ2,Ξ3) = −ηKL
(
ΞK3 ∂

NΞL2 ∂NΞ
M
1 − ΞK3 ∂

NΞL1 ∂NΞ
M
2 + ΞK2 ∂

NΞL1 ∂NΞ
M
3

)
. (2.22)

Therefore，D-bracket does not govern the Leibniz algebra. D-bracket is suggested to have
a more fundamentally different structure.

Similarly, as an analogy for the general relativity, we expand the commutator of the
generalized Lie derivative itself [L̂Ξ1 , L̂Ξ2 ]V

M . Recall the exchange relation in Lie bracket
for ordinary vectors, this seems to be the generalized Lie derivative of the commutator
L̂[Ξ1,Ξ2]V

M , but in fact we obtain the following result.

[L̂Ξ1 , L̂Ξ2 ]V
M = L̂[Ξ1,Ξ2]CV

M + TM(Ξ1,Ξ2, V ). (2.23)

Here，[Ξ1,Ξ2]C is the following bracket. This is called C-bracket. C-bracket is an anti-
symmetric bracket, unlike C-bracket.

[Ξ1,Ξ2]
M
C = ΞK1 ∂KΞ

M
2 − ΞK2 ∂KΞ

M
1 −

1

2
ηMNηKL

(
ΞK1 ∂NΞ

L
2 − ΞK2 ∂NΞ

L
1

)
(2.24)

TM(Ξ1,Ξ2, V ) is following quantity.

TM (Ξ1,Ξ2, V ) =
1

2
ηKL

(
ΞK1 ∂

PΞL2 − ΞK2 ∂
PΞL1

)
∂PV

M −
(
∂PΞM1 ∂PΞ

K
2 − ∂PΞM2 ∂PΞ

K
1

)
VK .

(2.25)

If we examine the properties of the generalised Lie derivative as an analogy to the ordi-
nary Lie derivative, we find two apparently different brackets, D-bracket and C-bracket. In
fact, C-bracket is an anti-symmetric reworking of D-bracket. It is clear from the expressions
(2.19) and (2.23)that they are related as follows:

[Ξ1,Ξ2]
M
C =

1

2

(
[Ξ1,Ξ2]

M
D − [Ξ2,Ξ1]

M
D

)
= [Ξ1,Ξ2]

M
D −

1

2
ηMNηKL∂N

(
ΞK1 Ξ

L
2

)
(2.26)
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Using this, we calculate the Jacobiator of the C-bracket

JC(Ξ1,Ξ2,Ξ3) = [[Ξ1,Ξ2]C,Ξ3]C + [[Ξ2,Ξ3]C,Ξ1]C + [[Ξ3,Ξ1]C,Ξ2]C

= [[Ξ1,Ξ2]C,Ξ3]C + c.p.. (2.27)

Here, c.p. means the cyclic parmutation. From (2.26), we obtain

[[Ξ1,Ξ2]C,Ξ3]C =
1

2
([[Ξ1,Ξ2]C,Ξ3]D − [Ξ3, [Ξ1,Ξ2]C]D)

=
1

4
([[Ξ1,Ξ2]D,Ξ3]D − [[Ξ2,Ξ1]D,Ξ3]D − [Ξ3, [Ξ1,Ξ2]D]D + [Ξ3, [Ξ2,Ξ1]D]D).

(2.28)

We use the D-bracketの Leibniz rule, and we obtain

[[Ξ1,Ξ2]C,Ξ3]C =
1

4
([Ξ1, [Ξ2,Ξ3]D]D − [Ξ2, [Ξ1,Ξ3]D]D − LD(Ξ1,Ξ2,Ξ3)

− [Ξ2, [Ξ1,Ξ3]D]D + [Ξ1, [Ξ2,Ξ3]D]D + LD(Ξ2,Ξ1,Ξ3)

− [Ξ3, [Ξ1,Ξ2]D]D + [Ξ3, [Ξ2,Ξ1]D]D). (2.29)

We can rewrite the cyclic term, so the Jacobiator becomes

JC(Ξ1,Ξ2,Ξ3) =
1

4
([Ξ1, [Ξ2,Ξ3]D]D − [Ξ2, [Ξ1,Ξ3]D]D − LD(Ξ1,Ξ2,Ξ3) + LD(Ξ2,Ξ1,Ξ3) + c.p.)

=
1

4
([[Ξ1,Ξ2]D,Ξ3]D − LD(Ξ2,Ξ1,Ξ3) + c.p.). (2.30)

Here, from (2.26), we obtain

[[Ξ1,Ξ2]C,Ξ3]C = [[Ξ1,Ξ2]C,Ξ3]D − ∂•([Ξ1,Ξ2]C,Ξ3)

= [[Ξ1,Ξ2]D,Ξ3]D − [∂•(Ξ1,Ξ2),Ξ3]D − ∂•([Ξ1,Ξ2]C,Ξ3). (2.31)

Here，∂• means ηMN∂N and (Ξ1,Ξ2) = (ηMNΞ
M
1 ΞN2 )/2. The second term on the right-hand

side of (2.31) is calculated as

[∂•(Ξ1,Ξ2)+,Ξ3]
M
D =

1

2

(
∂N(ΞK1 Ξ2,K)∂NΞ

M
3 + (∂M∂N(Ξ

K
1 Ξ2,K)− ∂N∂

M(ΞK1 Ξ2,K))Ξ
N
3

)
=

1

2
∂N(ΞK1 Ξ2,K)∂NΞ

M
3 . (2.32)

Finally, Using (2.31), we obtain the Jacobiator as

JMC (Ξ1,Ξ2,Ξ3) = ∂MNC(Ξ1,Ξ2,Ξ3) + SCC(Ξ1,Ξ2,Ξ3) (2.33)

where

NC(Ξ1,Ξ2,Ξ3) =
1

3
(([Ξ1,Ξ2]C ,Ξ3)+ c.p.) (2.34)

SCC(Ξ1,Ξ2,Ξ3) =
1

3
([∂•(Ξ1,Ξ2),Ξ3]D − LD(Ξ1,Ξ2,Ξ3) + c.p.) . (2.35)

In generally, the Jacobiator of the C-bracket (2.33) is non-zero. It is clear that the C-bracket
governs not Lie algebra. There is a different gauge structure.
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2.3 Section constraints

In the previous section, we introduce the generalised Lie derivative, D-bracket and C-bracket,
and investigate the property of these bracket. Recalling here the exchange relation of the
generalised Lie derivative (2.23), the following conditions are required to close the gauge
algebra described by the C-bracket,

ηMN∂
MΨ1∂

NΨ2 = 0, (2.36)

for any field or parameter Ψ. The condition for the Jacobiator of the C-bracket is written
by total deivative is also (2.36).

In addition，the condition (2.36) is also necessary to state the gauge invariance of the
DFT action. The generalized deffeomorphism of generalized Ricci scalar R is calclated
as [83]

δΞR = L̂ΞR = ΞM∂MR+G(Ξ,H, d) (2.37)

where

G(Ξ,H, d) = −∂P∂NΞM∂PHMN − 2∂PΞM∂P∂NHMN + 4∂Pd∂M∂PΞNHMN

+ 4∂Pd∂
PΞN∂MHMN + 4∂Nd∂

PΞM∂PHMN

+
1

4
HMN∂PΞM∂PHKL∂NHKL −HMN∂PΞM∂PHKL∂KHNL

+ 8HMN∂PΞM∂P∂Nd− 8HMN∂Md∂PΞN∂Pd

− 2∂M
(
∂P∂PΞNHN

)
+ 4∂P∂PΞM∂NdHMN . (2.38)

Using this results, the generalised deffeomorphism of the type II DFT action is calculated
as

δΞSDFT =

∫
d2DXδΞ

(
e−2dR

)
=

∫
d2DX

((
δΞe

−2d
)
R+ e−2dδΞR

)
=

∫
d2DX

(
ΞK
(
∂Ke

−2d
)
R+ e−2d

(
∂KΞ

K
)
R+ e−2dΞK∂KR+ e−2dG(Ξ,H, d)

)
=

∫
d2DX

[
∂K
(
e−2dΞKR

)
+ e−2dG(Ξ,H, d)

]
. (2.39)

Here we assume that the integral of the total derivative terms become zero. We focus on
the each terms in G(Ξ,H, d) (2.38), δΞSDFT = 0 only by request the condition (2.36). In
this Section we further consider the condition (2.36).

Historically, DFT is a theory with consistecy condition. The first version of DFT was
built using arguments in closed SFT [64]．There is the level-matching condition（LMC）
pµω

µ = 0. pµ, ωµ are the quantised momentum and winding number of the string. Imple-
menting this in doubled spacetime, the LMC becomes

∂µ∂̃
µΨ(xµ, x̃µ) = 0 (2.40)
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x̄µ xµ

x̃1 x1

x2 x̃2
x̃3 x3

x̃4 x4

...
...

xD x̃D

Table 2.1: An example of the relation between (x̄µ, x
µ) and (x̃µ, x

µ).

where Ψ(xµ, x̃µ) is arbitary massless fields. This constraint is called weak constraint. Any
field or gauge parameter appearing in the DFT must satisfy this constraint. However, in
general, arbitrary product of fields do not satisfy this constraint. This problem can be solved
by introducing projection operators on product of fields.．Indeed, the construction of DFTs
based on weak constaint is discussed, for example, in [91]. However, the most common way
is to introduce the following other constraint, which is effective for arbitrary products of
fields.

∂µ∂̃
µ(Ψ1Ψ2) = 0. (2.41)

This constraint ie called strong constraint. This can be rewritten to O(D,D) covariant
form, it becomes (2.36). The strong constraint has no physical origin and is only the closure
condition of the C-bracket, as described at the beginning of this Section. The relaxation
of strong constraints is discussed, for example, in [83, 88]. In this paper, Sec. 5.6 are also
relevant.

Strictly speaking, DFT should be interpreted as a theory on RD−n × T 2n ( T 2n is a
doubled torus in 2n-dimensions ). Given the connection from string theory, only O(n, n,Z)
group acts on the doubled torus as a T-duality group, which is expected to reproduce the
T-duality in string theory. However, DFT with strong constraints imposed, O(n, n,Z) can
be extended to O(D,D,R) acting on the form R2D. This is because, a set of fields satisfying
strong constraints always have an O(D,D) frame (x̄µ, x

µ) which the fields depends only on
xµ [92]. In this situation, (x̄µ, xµ) simply means that the inner product is formed by O(D,D)

metric η (Different characters x̄, x are used to distinguish it from x̃, x). In other words, DFT
imposed the strong constraint does not actually mean that the theory is truly “doubled”.

We refer to the weak and strong constraints collectively as the physically section con-
dition. As mentioned above, the simplest way to solve this condition is to make the field
depend only on xµ) out of (x̄µ, xµ). Although the display is inevitably confusing, this only
selects a D-dimensional subspace from a 2D-dimensional space. Therefore, x̄µ and xµ have
no particular physical meaning. In general, xµ contains xµ and x̃µ. For pairs constituting
an O(D,D) inner product with η (e.g. x1 and x̃1), only one of them is included (Figure
2.1).

Thus, by imposing the section condition, a maximally isotropic subspace of half dimen-
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sion can be extracted from a 2D-dimentional doubled space. In this case, the coordinates
selected as the subspace depend on how the T-duality frame is taken. Therefore, the O(D,D)

transformation can change the coordinates selected as the subspace. This idea of identi-
fying spacetime as a subspace determined in terms of T-duality is described in [54]. This
corresponds to selecting a leaf from the foliation in para-Hermitian geometry (see Chapter
4). It also corresponds, in physical terms, to selecting the coordinates corresponding to the
physical spacetime when we consider the supergravity from the DFT. Once, we consider the
simplest example. We choose the D-dimentional subspace subspace as xµ = xµ. Then, since
all fields do not depend on x̃µ, we have

∂

∂x̃µ
Ψ(x) = ∂̃µΨ(x) = 0. (2.42)

We rewrite the generalized Ricci scalar R according to this condition and find that DFT
action is reduced to the bosonic part of type II super gravity.

SDFT =

∫
dXe−2dR ∂̃Ψ=0−→ Ssugra =

∫
dx
√
−ge−2Φ

(
R + 4(∂Φ)2 − 1

12
HµνρH

µνρ

)
. (2.43)

where R is the usual Ricci scalar that appears in the general rerativity. Also, H = dB is the
field strength of the Kalb-Ramond field Bµν . In this sense, (type II) DFT is an extension
of type II supergravity in the form of explicit T-duality.

The C-bracket is also deformated by strong constraint. To make this explicit, we first
decompose the gauge parameters Ξ1,Ξ2 by their components as follows.

ΞM1 =

(
αµ

Aµ

)
, ΞM2 =

(
βµ

Bµ

)
. (2.44)

Here, α, β are parameters on x̄µ and A,B are parameters on xµ. With this component
representation, the C-bracket can be rewritten as follows.

[Ξ1,Ξ2]
M
C = ΞK1 ∂KΞ

M
2 − ΞK2 ∂KΞ

M
1 −

1

2
ηKL(Ξ

K
1 ∂

MΞL2 − ΞK2 ∂
MΞL1 )

= αν ∂̃
νΞM2 + Aν∂νΞ

M
2 − βν ∂̃

νΞM1 − Bν∂νΞ
M
1

− 1

2
(αν∂

MBν + Aν∂Mβν − βν∂
MAν − Bν∂Mαν). (2.45)

Using the doubled basis ∂M = (∂µ, ∂̃
µ), C-bracket is expanded as

[Ξ1,Ξ2]C = [Ξ1,Ξ2]
M
C ηMN∂

N = αν ∂̃
νβµ∂̃

µ + Aν∂νβµ∂̃
µ − βν ∂̃

ναµ∂̃
µ − Bν∂ναµ∂̃

µ

+ αν ∂̃
νBµ∂µ + Aν∂νB

µ∂µ − βν ∂̃
νAµ∂µ − Bν∂νA

µ∂µ

− 1

2
(αν ∂̃

µBν + Aν ∂̃µβν − βν ∂̃
µAν − Bν ∂̃µαν)∂µ

− 1

2
(αν∂µB

ν + Aν∂µβν − βν∂µA
ν − Bν∂µαν)∂̃

µ. (2.46)
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We shall now recapitulate each term e.g. in the commutator as follows，

[A,B]L = [A,B]µL∂µ = (Aν∂νB
µ − Bν∂νA

µ)∂µ,

[α, β]L̃ =
(
[α, β]L̃

)
µ
∂̃µ = (αν ∂̃

νβµ − βν ∂̃
ναµ)∂̃

µ,

dιAβ = d(Aνβν) = ∂µ(A
νβν)∂̃

µ = (βν∂µA
ν + Aν∂µβν)∂̃

µ,

d̃ιAβ = d̃(Aνβν) = ∂̃µ(Aνβν)∂µ = (βν ∂̃
µAν + Aν ∂̃µβν)∂µ,

L̃αB = (αν ∂̃
νBµ +Bν ∂̃µαν)∂µ,

LAβ = (Aν∂νβµ + βν∂µA
ν)∂̃µ, (2.47)

where L is the Lie derivative with respect to an ordinary vector field. On the other hand, L̃
is the Lie derivative with respect to a vector field in winding coordinates. Similarly,[·, ·]Lis
an ordinary Lie bracket, but Similarly, [·, ·]L̃is a Lie bracket with respect to the vector field
in winding coordinates. Using these，we can rewrite the C-bracket as

[Ξ1,Ξ2]
M
C ∂M = ([α, β]L̃)µ∂̃

µ + Aν∂νβµ∂̃
µ − Bν∂ναµ∂̃

µ + [A,B]µL∂µ + αν ∂̃
νBµ∂µ − βν ∂̃

νAµ∂µ

− 1

2
(2Aν ∂̃µβν − (d̃ιAβ)

µ + (d̃ιBα)
µ − 2Bν ∂̃µαν)∂µ

− 1

2
((dιAβ)µ − 2βν∂µA

ν − (dιBα)µ + 2αν∂µB
ν)∂̃µ

=

(
[A,B]µL + L̃αBµ − L̃βAµ +

1

2
(d̃(ιAβ − ιBα))

µ

)
∂µ

+

(
([α, β]L̃)µ + LAβµ − LBαµ −

1

2
(d(ιAβ − ιBα))µ

)
∂̃µ. (2.48)

This form can eventually be rewritten as follows [93]．

[Ξ1,Ξ2]C = [A+ α,B + β]C = [A,B]L + LAβ − LBα−
1

2
d(ιAβ − ιBα)

+ [α, β]L̃ + L̃αB − L̃βA+
1

2
d̃(ιAβ − ιBα). (2.49)

In (2.49), the first line depends on x, the second line on x̃. If we impose strong constraints
on (2.49), only the second line is vanished and the bracket changes as follows.

[Ξ1,Ξ2]C
∂̃Ψ=0−→ [A,B]L + LAβ − LBα−

1

2
d(ιAβ − ιBα) (2.50)

Similarly, the D-bracket with the strong contraint as follows.

[Ξ1,Ξ2]D
∂̃Ψ=0−→ [A,B]L + LAβ − ιBdα. (2.51)

In fact, the structures descrived by C-bracket and D-bracket, i.e. gauge algebra in DFT,
is not algebra but algebroid. The properties of algebroid will be dealt with in the next
Chapter 3. The algebraic origin of the strong constraint are discussed in Chapter 5. The
structure algebroid is known to appear not only in type II DFT but also in other theories
focusing on string duality [94–97] In particular, in heterotic DFT, twisted algebrids with
3-forms appear, as presented in [84, 86]. In the next section, we conclude this chapter with
a brief description of the structure of heterotic DFT.
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2.4 Heterotic DFT

As mentioned in Chapter 1, string duality links the five string theories. Among them, the
type II DFT, described in the previous section, formulated by focusing on T-duality. T-
duality relates not only type II theories but also heterotic theories [32] . It is natural to
consider the construction of heterotic DFT in the same way as type II DFT. A heterotic
string consists of the supersymmetric right-moving part and the left-moving part describing
the gauge symmetry [98]．For the theory to be consistent, the gauge group must be E8×E8

or SO(32). The low-energy limit of heterotic string theory is the heterotic supergravity. To
realise the anomaly cancellation mechanism, heterotic supergravity requires α′-(or higher
order) corrections [99,100]．The α′-corrections to DFT is also naturally discussed [81]，in the
process, heterotic DFT (or gauged DFT) is proposed in [82,83,101]. This can be interpreted
as an O(D,D + n) covariant formulation of the heterotic supergravity. Here is a very brief
introduction to the construction of the heterotic DFT.

Comparing the heterotic DFT with the type II DFT, the symmetry group is extended to
O(D,D+n). This n corresponds to the degrees of freedom of the gauge field. The “doubled
spacetime” in heterotic DFT is extended to 2D + n dimensions XM = (x̃µ, yα, x

µ). Here,
M = 1, · · · (2D + n), µ, ν = 1, · · · , D, α = 1 · · ·n. yα direction is the extended space by the
gauge group. At this point, it can be seen that the “doubled spacetime of heterotic DFT”
(rather than generalized spacetime) is fundamentally different from it of type II DFT.

We introduce the O(D,D + n) invariant metritc as

ηMN =

 0 0 δµν

0 καβ 0

δµ
ν 0 0

 , ηMN =

 0 0 δµ
ν

0 καβ 0

δµν 0 0

 (2.52)

where καβ, κ
αβ is n× n matrix and the Cartan-Killing form of SO(32) and E8×E8 group.

Next, we introduce the fundamental dynamical fieldsH(X) and d(X). HMN = ηMPηNQHPQ

is satisfied between the generalized metric H(X) and the O(D,D + n) metric. The gen-
eralised metric H is parametrized on the coset space O(D,D + n)/(O(D) × O(D + n)),
including the gauge field Aµ

α.

HMN =

 gµν + α′Aα
µAνα + cρµg

ρσcσν
√
α′Aµα +

√
α′Aραg

ρσcσµ −cρµgρν√
α′Aνβ +

√
α′Aρβg

ρσcσν καβ + α′Aραg
ρσAσβ −

√
α′Aρβg

ρν

−cσνgσµ −
√
α′Aσαg

σµ gµν

 (2.53)

where cµν = Bµν + (α′Aµ
αAνα)/2.

Heterotic DFT action is given by [82,83]

ShDFT =

∫
d2D+nXe−2d (R(H, d) +Rf (H, d)) . (2.54)
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where

R(H, d) = 4HMN∂M∂Nd− ∂M∂NHMN − 4HMN∂Md∂Nd+ 4∂MHMN∂Nd

+
1

8
HMN∂MHKL∂NHKL −

1

2
HMN∂MHKL∂KHNL, (2.55)

Rf (H, d) = −
1

2
fMNKHNLHKP∂LHMP −

1

12
fMNKf

L
PQHMLHNPHKQ

− 1

4
fMNKf

N
MLHKL − 1

6
fMNKfMNK . (2.56)

Here, d2D+n = dDxdDx̃dny and e−2d =
√
−ge2ψ. fMNK is the structure constant of the

gauge group. fMNK satisfies teh following conditions,

f (M
PKη

N)K = 0, fMN [Kf
N
LP ] = 0. (2.57)

In particular, the second condition is the Jacobi identity for fMNK . The generalised gauge
transformation δ̂Ξ for any V M , VM can be written as follows.

δ̂ΞV
M = ΞN∂NV

M − (∂MΞK − ∂KΞ
M)V K − ΞNfMNKV

K , (2.58)

δ̂ΞVM = ΞN∂NVM − (∂MΞK − ∂KΞM)VK − ΞKfNKMV N . (2.59)

Therefore, generalized gauge transformation of HMN and d are given by

δΞHMN = ΞP∂PHMN +
(
∂MΞP − ∂PΞ

M
)
HPN

+
(
∂NΞP − ΞPΞ

N
)
HMP − 2ΞPf (M

PKHN)K , (2.60)

δΞd = ΞM∂Md− 1

2
∂MΞM . (2.61)

Compared with type II DFT, These are deformed by fMNK . For a hetertotic DFT action
(2.54) to be invariant under this generalized gauge transformation, the following conditions
are required.

ηMN∂
MΨ1∂

NΨ2 = 0, (2.62)

fMNK∂MΨ1 = 0. (2.63)

Ψi(i = 1, 2) are arbitrary fields or gauge parameters. The(2.62) is apparently same form as
the strong constraint (2.36) of the type II DFT. However, ηMN is an O(D,D + n) metric
and M,N = 1, · · · , (2D+n). (2.63) is a condition on fMNK , which appeared only heterotic
DFT. These conditions are the closure conditions of the gauge algebra in heterotic DFT the
commutator of δ̂Ξ is calclated as

[δΞ1 , δΞ2 ]V
M = δ[Ξ1,Ξ2]f

V M + TM
(
Ξ1,Ξ2, V

)
− ηMRΞP1 f

Q
RP (∂QΞ2N)V

N + ηMRΞP2 f
Q
RP (∂QΞ1N)V

N

+ fLNK
(
∂LΞ

M
1

)
ΞN2 V

K − fLNK
(
∂LΞ

M
2

)
ΞN1 V

K − ΞN2 Ξ
K
1 f

P
NK∂PV

M

+
1

2
ηMRΞL1 f

N
RK (∂NΞ2L)V

K − 1

2
ηMRΞL2 f

N
RK (∂NΞ1L)V

K . (2.64)
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Here，[·, ·]f is the C-bracket in heterotic DFT. It taked the following form [82,84]．

[Ξ1,Ξ2]f = ΞK1 ∂KΞ
M
2 − ΞK2 ∂KΞ

M
1 −

1

2
ηMNηKL(Ξ

K
1 ∂KΞ

L
2 − ΞK2 ∂KΞ

L
1 ) + ΞN2 Ξ

K
1 f

M
NK

= [Ξ1,Ξ2]
M
C + ΞN2 Ξ

K
1 f

M
NK . (2.65)

The algebroid structure given by [Ξ1,Ξ2]f is discussed in Sec 5.6. Also，

TM(Ξ1,Ξ2, V ) =
1

2
ηKL(Ξ

K
1 ∂

PΞL2 − ΞK2 ∂
P )∂PV

M − (∂PΞM1 ∂PΞ
K
2 − ∂PΞM2 ∂PΞ

K
1 )VK . (2.66)

First, for TM(Ξ1,Ξ2, V ) to vanish, we need to impose (2.62). Furthermore, for the gauge
algebra to close, (2.63) is also required. This additional condition can also be interpreted as
a strong constraint in the direction yα [82], but the physical origin is still unknown. If we
impose the two conditions (2.62) and (2.63) for the heterotic DFT action and choice n = 496,
then It is known that (excluding the square of the Riemannian curvature) a 10-dimensional
heterotic supergravity action appears [83].

ShDFT =

∫
dXe−2d(R+Rf )

(2.62),(2.63)−→

Shsugra =

∫
dx
√
−ge−2Φ

(
R + 4(∂Φ)2 − 1

12
HµνρH

µνρ − α′

4
TrFµνF

µν

)
. (2.67)

However, R is the usual Ricci scalar that appears in the general rerativity. H is the field
strength of the Kalb-Ramond field Bµν and F is the field strength of the gauge field Aα

µ.
Now, the geometry of heterotic DFT is more obscure than that of type II. There is a

doubled α′ geometry in the sense that it is purely a geometry with yα directions, but there
is no global geometry such as the para-Hermitian or Born geometry for type II DFT.
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3 | Algebroid Structures

In this chapter, we introduces two new concepts. The first is the concept of a (classical)
Drinfel’d double. Drinfel’d double was originally invented for Hopf algebras. A new Hopf
algebra can be obtained by a direct sum of dual Hopf algebras, this operation is called
Drinfel’d double. In a nutshell, a Hopf algebra is a parametric deformation of a Lie algebra,
and a Lie algebra is obtained by taking the classical limit on the parameters. In this article,
we first show that the Drinfel’d double of Lie algebra is actually performed as an example
of Drinfel’d double, and that a new Lie algebra is obtained as a result.

The second new concept is the “algebroid”, which was introduced in the previous chapter
as a DFT gauge algebra defined by C-bracket. The most basic algebroid is the Lie algebroid.
This can be regarded as a generalization of Lie algebra to vector bundles. Just as Drinfel’d
double can be implemented for Lie algebra, we can consider the Drinfel’d double for Lie
algebroid [102]. The structure defined by the C-bracket in DFT is the Vaisman algebroid,
this is more general structure of Lie algebroid. We show that the Vaisman algebroid can be
obtained by similar to Drinfel’d double on Lie algebroid [85]. This operation is referred to
in the text simply as “doubled”. The proof will be discussed in Sec. 3.5. (and Appendix A).

3.1 Lie algebra and Lie bialgebra

In this section, we give a brief review on the Drinfel’d double of Lie bialgebras. This is one
of the important topic in this paper. Please also refer to this literature [103, 104] We first
introduce the notion of Lie algebras. Lie algebra is defined as follows.

Definition 3.1.1. Let (V, [·, ·]) be a Lie algebra over a field K defined by a vector space
V together with a skew-symmetric bilinear bracket (the Lie bracket) [·, ·] : V × V → V

satisfying the Jacobi identity,

[[x, y], z] + [[y, z], x] + [[z, x], y] = 0. (3.1)

We denote a Lie algebra by g.

Since V is a vector space, we can also define the dual Lie algebra by the dual vector
space V ∗. We define the dual Lie algebrag∗ based on the dual vector space V ∗ equipped
with the dual Lie bracket [·, ·]∗. There is a natural bilinear inner product 〈·, ·〉 between g

and g∗ taking value in K is defined.
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Next, we consider a representation ϱ of g. A Lie algebra element x ∈ g acts on itself by
the adjoint representation ad : x ∈ g 7→ adx ∈ End g by adx(y) = [x, y] for x, y ∈ g. More
generally, x ∈ g acts on any tensor products ⊗pg = g⊗ g⊗ · · · ⊗ g as

ϱ(x) · (y1 ⊗ · · · ⊗ yp) = ad(p)
x (y1 ⊗ · · · ⊗ yp)

= adx(y1)⊗ y2 · · · ⊗ yp + y1 ⊗ adx(y2)⊗ · · · ⊗ yp + · · ·

· · ·+ y1 ⊗ · · · ⊗ adx(yp). (3.2)

Therefore the adjoint action satisfies the Leibniz rule. The Jacobi law (3.1) of the Lie
bracket product can also be interpreted as the Leibniz law of ad.

adz([x, y]) = [adz(x), y] + [x, adz(y)]. (3.3)

Similarly, we consider the action of x ∈ g on a p-order outer product algebra ∧pg. It is
sufficient to consider the action on the fully antisymmetric tensor product ⊗pg, which can
be defined as follows.

ϱ(x) · y1 ∧ y2 = [x, y1] ∧ y2 + y1 ∧ [x, y2]. (3.4)

If we consider this in the same way as the exterior differential operator d on the cotangent
bundle, we can define the operator d : ∧pg∗ → ∧p+1g∗.It satisfies d2 = 0. In a similar
procedure, by considering the representation of g∗ and its action, we can also introduce the
dual operator d∗ : ∧pg → ∧p+1g. It is satisfies d2

∗ = 0. Using d and d∗, we can define the
Lie algebra cohomology on g [105].

It is worthwhile to discuss a generalization of the Lie bracket to the one in ∧pg. The
skew-symmetric Schouten-Nijenhuis bracket [·, ·]S : ∧pg × ∧qg → ∧p+q−1g is defined by the
following properties [106]:

(i) [a, b]S = −(−)(p−1)(q−1)[b, a]S.

(ii) [a, b ∧ c]S = [a, b]S ∧ c+ (−)(p−1)qb ∧ [a, c]S.

(iii) (−)(p−1)(r−1)[a, [b, c]S]S + (−)(q−1)(r−1)[b, [c, a]S]S + (−)(r−1)(q−1)[c, [a, b]S]S = 0.

(iv) The bracket of an element ∧pg and an element in ∧0g = K is 0.

Here a ∈ ∧pg, b ∈ ∧qg and c ∈ ∧rg. Indeed, the Schouten-Nijenhuis bracket is a unique
generalization of the Lie bracket that makes ∧pg be a Gerstenhaber algebra.

Next, we investigate the relation between g andg∗. If a, b are element of g, the Lie bracket
[a, b] is also an element of g, so Lie bracket can be regarded as a bilinear map µ : ∧2g→ g.
Since Lie bracket is antisymmetric, let [·, ·] be µ : ∧2g→ g. The dual Lie bracket [·, ·]∗ can
be written as µ∗ : ∧2g∗ → g∗. We can then define the co-bracket of µ is δ : g → ∧2g. The
adjoint of a map µ∗, denoted as µ∗

∗, is defined through the inner product 〈·, ·〉 between ∧•g
and ∧•g∗ by 〈x, µ∗(ξ)〉 = 〈µ∗

∗(x), ξ〉 where x ∈ g and ξ ∈ ∧2g∗. Here, ∧• stands for any
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powers of the wedge products. Since δ is given by µ∗
∗, δ can be defined by µ∗

∗. Since the
dual Lie bracket µ∗ satisfies the Jacobi law δ satisfies the Jacobi identity. In other words,
the dual Lie bracket µ∗ can be defined by δ∗. If we define the Lie algebra g = (V, [·, ·]) and
the co-bracke of [·, ·], then The dual Lie algebra g∗ = (V ∗, [·, ·]∗) can be induced naturally
by inner product.

Definition 3.1.2. if δ satisfies the 1-cocycle condition:

δ([x, y]) = ad(2)
x δ(y)− ad(2)

y δ(x), x, y ∈ g, (3.5)

then, the structure (g, µ, δ) is called the Lie bialgebra.

If (g, µ, δ) is Lie bialgebra, (g∗, µ∗, δ∗) is also define the same Lie bialgebra．So, we write
the Lie bialgebra as (g, g∗).

3.2 Drinfel’d double

Next，We consider the Drinfel’d double of Lie bialgebra. For g, g∗ which constitute the
Lie bialgebra (g, g∗), we can define a non-degenerate, symmetric bilinear form (g, g∗) on
d = g⊕ g∗ as follows,

(x, y) = (ξ, η) = 0, (x, ξ) = 〈ξ, x〉, x, y ∈ g, ξ, η ∈ g∗. (3.6)

We then require that there is a skew-symmetric bracket [·, ·]d which is invariant under the
bilinear form.

(y, [x, ξ]d) = ([y, x]d, ξ). (3.7)

g, g∗ are subalgebra of d respectively, this is natural definition of the bracket

[x, y]d = [x, y], [ξ, η]d = [ξ, η]∗, x, y ∈ g, ξ, η ∈ g∗. (3.8)

For closs term of g and g∗, we consider [x, ξ]d as follows,

(y, [x, ξ]d) = ([y, x]d, ξ)

= ([y, x], ξ) = 〈ξ, [y, x]〉 = 〈ξ,−adx(y)〉 = 〈ad∗
xξ, y〉 = (y, ad∗

xξ). (3.9)

Here, The first equality follows from the definition of the invariance. The second comes from
the fact that g is a subalgebra (3.8). Here we also use the co-adjoint for ad∗

x = −(adx)∗,
Similarly, we have (η, [x, ξ]d) = −(η, ad∗

ξx). These facts result in the definition,

[x, ξ]d = −ad∗
ξx+ ad∗

xξ. (3.10)

From (3.5), (3.8), and (3.10), [·, ·]d is also satisfiy Jacobi identity. Thus, If the 1-cocycle
condition (3.5) holds between g and g∗ ( (g, g∗) is a Lie bialgebra), (d = g⊕g∗, [·, ·]d) becomes
an new Lie algebra. in this way, the operation of constructing a new Lie algebra d is called
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the Drinfel’d double of Lie bialgebras. The pair of a non-degenerate bilinear form and a
Lie algebra with Lie brackets that keeps it invariant is called, in particular, a quadratic Lie
algebra. The d becomes quadratic Lie algebra naturally.

We can also the inverse of Drinfel’d double. Let p is quadratic Lie algebra. If a, b is sub
algebra of p and isotropic for the bilinear form for p, i.e. (x, y) = 0 for arbitary x, y ∈ g,
the (p, a, b) is called Manin triple [107]．The (d, g, g∗) becomes Manin triple.

3.3 Lie algebroid and Lie bialgebroid

The procedure Drinfel’d double for Lie algebroids in the previous section can be extended di-
rectly to Drinfel’d double for Lie algebroids. There are various types of algebroid structures,
of which the Lie algebroid is the most basic. It is defined as follows.．

Definition 3.3.1. The combination of the following structures (E, [·, ·]E, ρ) is called a Lie
algebroid.

• a vector bundle E over a manifold M

• a Liebracket for Γ(E) (a section of E), [·, ·]E : Γ(E)× Γ(E)→ Γ(E).

• a bundle map ρ : E → TM .
ρ and [·, ·]E are satisfy following condition,

ρ([X,Y ]E) = [ρ(X), ρ(Y )], X, Y ∈ Γ(E). (3.11)

ρ is called anchor map.

Lie bracket [·, ·]E is satisfies the Jacobi identity. The following condition is also satisfied,

[X, fY ]E = (ρ(X) · f)Y + f [X,Y ]E. (3.12)

for f ∈ C∞(M). Here, (ρ(X) · f) means ρ(X) acts as the differential operator for f .

Given a Lie algebroid, we can define the dual Lie algebroid (E∗, [·, ·]E∗ , ρ∗) on the same
base manifold. Again, there is a natural inner product 〈·, ·〉 between E and E∗. As a
generalization of ordinary calculus for (multi)vectors and forms in Γ(TM) and Γ(T ∗M), we
define exterior algebras in Γ(∧•E) and Γ(∧•E∗). A natural inner product 〈ξ,X〉 between
∧pE and ∧pE∗ is defined. We then define a Lie algebroid differential as a map d : Ωp(E) =

Γ(∧pE∗)→ Ωp+1(E) where Ωp(E) is a generalization of p-form on T ∗M . More explicitly, the
exterior derivative d is defined through the action of ξ ∈ Γ(∧pE∗) on vectors Xi ∈ Γ(E) [108]:

dξ(X1, . . . , Xp+1) =

p+1∑
i=1

(−)i+1ρ(Xi) ·
(
ξ(X1, . . . , X̌i, . . . , Xp+1)

)
+
∑
i<j

(−)i+jξ([Xi, Xj]E, X1, . . . , X̌i, . . . , X̌j, . . . , Xp+1), (3.13)
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where the notation X̌i stands for that the term is omitted in the expression. We sometimes
use the notation such as ξ(X) = 〈ξ,X〉 for the natural scalar product between ξ ∈ Ωp(E)

and X ∈ Ωp(E
∗).

The exterior derivative, in particular, satisfies the following properties:

d(ξ ∧ η) = dξ ∧ η + (−)|ξ|ξ ∧ dη,

df(X) = ρ(X) · f,

dξ(X,Y ) = ρ(X) · (ξ(Y ))− ρ(Y ) · (ξ(X))− ξ([X,Y ]E), (3.14)

where X,Y ∈ Γ(E), ξ, η ∈ Γ(E∗). Similarly, a Lie derivative LX : Γ(∧pE∗) → Γ(∧pE∗) by
X ∈ Γ(E) is defined by

LX(ξ)(Y1, . . . , Yp) = ρ(X) · (ξ(Y1, . . . , Yp))−
p∑
i=1

ξ (Y1, . . . , [X,Yi]E, . . . , Yp) , (3.15)

where Y1, . . . , Yp ∈ Γ(E), ξ ∈ Γ(∧pE∗). The interior product ιX : Γ(∧pE∗)→ Γ(∧p−1E∗) by
X ∈ Γ(E) is defined by

(ιXξ)(Y1, . . . , Yp−1) = ξ(X,Y1, . . . , Yp−1), (3.16)

where Y1, . . . , Yp−1 ∈ Γ(E), ξ ∈ Γ(∧pE∗). They satisfy the following relations:

L[X,Y ]E = LX · LY − LY · LX ,

ι[X,Y ]E = LX · ιY − ιY · LX ,

LX = d · ιX + ιX · d,

LfX(ξ) = fLX(ξ) + df ∧ ιX(ξ), (3.17)

where X,Y ∈ Γ(E), f ∈ C∞(M), ξ ∈ Γ(∧•E∗).
As we have discussed in the previous subsection, the Lie bracket [·, ·]E can be generalized

to those for multi-vectors Γ(∧pE). For X ∈ Γ(∧p+1E), Y ∈ Γ(∧q+1E) and f ∈ C∞(M), the
Schouten-Nijenhuis bracket satisfies the following properties:

(i) [X,Y ]S = −(−)pq[Y,X]S.

(ii) [X, f ]S = ρ(X) · f for X ∈ Γ(E).

(iii) For X ∈ Γ(∧p+1E), the bracket [X, ·]S acts on Γ(∧qE) as a degree-p derivation.

Here a derivation D is defined by an operator that satisfies the Leibniz rule D(ab) =

Da · b + aDb. We also define an exterior derivative d∗, the interior product and the Lie
derivative on Γ(∧•E). We note that when the base manifold M consists of a point, then
Γ(E) represents a globally defined vector. In this case, (E, [·, ·]E, ρ = 0) becomes a Lie
algebra. We also note that E = TM , ρ = id, [X,Y ]E = LXY defines a Lie algebroid with a
trivial structure.
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Once a Lie algebroid is defined, we can define a Lie bialgebroid. This is a generalization
of the Lie bialgebra discussed in the previous subsection. Let (E, [·, ·]E, ρ) be a Lie algebroid
E

π−→M and (E∗, [·, ·]E∗ , ρ∗) be its dual. For X,Y ∈ Γ(∧•E) and d∗ : Γ(∧•E)→ Γ(∧•+1E),
if the following compatibility condition

d∗[X,Y ]S = [d∗X,Y ]S + [X, d∗Y ]S (3.18)

is satisfied, then (E,E∗) is called a Lie bialgebroid over M . This implies that d∗ acts on
the Schouten-Nijenhuis bracket of Γ(∧•E) as a derivation. Therefore we call (3.18) the
derivation condition. The notion of a Lie bialgebroid was first introduced in [108]. If M
is a point and ρ is trivial, then (E,E∗) becomes a Lie bialgebra and the condition (3.18)
becomes the 1-cocycle condition (3.5).

3.4 Drinfel’d double for Lie bialgebroid and Courant algebroid

Now we consider the Drinfel’d double of a Lie bialgebroid (E,E∗). We may expect, from the
discussion on the Lie bialgebra, that a double E ⊕ E∗ possesses a Lie algebroid structure.
However, the result is not the case. Before discussing this issue, we introduce the notion of
Courant algebroids [102,109]. Let C π−→M be a vector bundle over M .

Definition 3.4.1. Courant algebroid is defined by the combination of the following struc-
tures (C, [·, ·]c, ρ, (·, ·)) and following axioms C1-C5 [102].

• a vector bundle C on a manifold M .

• a Courant bracket [·, ·]c : Γ(C)× Γ(C)→ Γ(C) , this is an anti-symmetric bracket.

• an anchor map ρ : C → TM .

• an non-degenerate symmetric bilinear form (·, ·).

Axiom C1. For any e1, e2, e3 ∈ Γ(C), the Jacobiator of [·, ·]c is given by

[[e1, e2]c, e3]c + c.p. = DT (e1, e2, e3), (3.19)

where T (e1, e2, e3) =
1
3
([e1, e2]c, e3)+ c.p. and c.p. is terms obtained by the cyclic permuta-

tions.

Axiom C2. For any e1, e2 ∈ Γ(C),

ρc([e1, e2]c) = [ρc(e1), ρc(e2)], (3.20)

where [·, ·] is the Lie bracket on TM .

Axiom C3. For any e1, e2 ∈ Γ(C), f ∈ C∞(M),

[e1, fe2]c = f [e1, e2]c + (ρc(e1) · f)e2 − (e1, e2)Df. (3.21)
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Axiom C4. ρc · D = 0, namely, for any f, g ∈ C∞(M), we have

(Df,Dg) = 0. (3.22)

Axiom C5. For any e1, e2, e3 ∈ Γ(C), we have the compatibility between the bilinear form
(·, ·) and the anchor ρc:

ρc(e1) · (e2, e3) = ([e1, e2]c +D(e1, e2), e3)+ (e2, [e1, e3]c +D(e1, e3)). (3.23)

Here, D = 1
2
β−1∗ρcd0, in which d0 is a natural exterior derivative on T ∗M , such that

(Df, e) = 1
2
ρc(e) · f for f ∈ C∞(M), e ∈ Γ(C). Then (C, [·, ·]c, ρc, (·, ·)) defines a Courant

algebroid. We note that axioms C1-C5 are not independent. Indeed, it is shown that the
axioms C3 and C4 follow from C5 and C2 respectively [110]. There is a definition of Courant
algebroids based on a non-skew-symmetric bracket for which the Jacobi identity holds. In
the following, we employ the definition based on a skew-symmetric bracket.

Instead of the above-mentioned antisymmetric Courant bracket [·, ·]c, there is also a way
to define it using the binary operation ◦ [111,112]. In this case, Axiom C1-C5 shown above
is replaced by Axiom C1′-C5′ as follows.

e1 ◦ (e2 ◦ e3) = (e1 ◦ e2) ◦ e3 + e2 ◦ (e1 ◦ e3) (Axiom C1′)

ρ(e1 ◦ e2) = [ρ(e1), ρ(e2)] (Axiom C2′)

e1 ◦ (fe2) = f(e1 ◦ e2) + (ρ(e1)f)e2 (Axiom C3′)

e1 ◦ e1 = D(e1, e1) (Axiom C4′)

ρ(e3)(e1, e2) = (e3 ◦ e1, e2)+ (e1, e3 ◦ e2) (Axiom C5′)

The equivalence of these definition is proved in [111]. As can be seen from Axiom C1 ′, ◦
satisfies the left Leibniz identity instead of the Jacobi identity. From the definition by the
antisymmetric bracket [·, ·]c, the Courant algebroid can be interpreted as a strong Homotopy
Lie algebra [113]. On the other hand, from the definition by the binary operation ◦, the
Courant algebroid can also be interpreted as Leibnitz algebroid.

Now we discuss the double of a Lie bialgebroid (E,E∗). This notion was first introduced
by Liu, Weinstein and Xu in [102]. Given a Lie bialgebroid (E,E∗), they considered the
following doubled structure on C = E ⊕ E∗:

(I) For X1, X2 ∈ Γ(E), ξ1, ξ2 ∈ Γ(E∗), a non-degenerate, bilinear forms (·, ·)± are defined
by

(X1 + ξ1, X2 + ξ2)± =
1

2

{
〈ξ1, X2〉 ± 〈ξ2, X1〉

}
, (3.24)

where 〈·, ·〉 is a natural inner product between E and E∗

(II) A skew-symmetric bracket [·, ·]c on Γ(C) is defined by

[e1, e2]c = [X1, X2]E + Lξ1X2 − Lξ2X1 − d∗(e1, e2)−

+ [ξ1, ξ2]E∗ + LX1ξ2 − LX2ξ1 + d(e1, e2)−, (3.25)

where ei = Xi + ξi ∈ Γ(C), (i = 1, 2).
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(III) An anchor ρc : C → TM is defined by ρc = ρ+ ρ∗. Namely, ρc(X + ξ) = ρ(X) + ρ∗(ξ)

for ∀X ∈ Γ(E), ∀ξ ∈ Γ(E∗).

(IV) An exterior derivative D = d + d∗ on C = E ⊕ E∗ is defined.

Given these structures, the authors in [102] showed that (C = E ⊕ E∗, [·, ·]c, ρc, (·, ·)+)
becomes a Courant algebroid satisfying the axioms C1-C5. We stress that the Jacobiator
of the Courant bracket [·, ·]c does not vanish in general. Therefore a Courant algebroid,
obtained by the double of a Lie bialgebroid, is not a Lie algebroid. This is in contrast to
the double of a Lie bialgebra.

The authors in [102] also showed that if there are complementally isotropic subbundles
E,E∗ with respect to the bilinear product (·, ·) in a Courant algebroid C, and if they are
closed under the Courant bracket [·, ·]c, then there is a natural Lie bialgebroid structure
on (E,E∗). When E,E∗ are maximally isotropic, i.e. dimE = dimE∗ = 1

2
dim C, then

E,E∗ are called Dirac structures and they provide therefore a natural generalization, a Lie
algebroid analogue, of the Manin triple (C, E,E∗). Indeed, when M consists of a point, a
Courant algebroid becomes a quadratic Lie algebra, namely, a Lie algebra with the non-
degenerate bilinear form (·, ·). This is just the double of a Lie bialgebra.

The Courant bracket naturally appears in the context of generalized geometry [37] where
the generalized tangent bundle TM = TM⊕T ∗M is prepared in order to realize manifest T-
duality. We note that the original Courant bracket on TM⊕T ∗M introduced by T. Courant
is defined by

[X1 + ξ1, X2 + ξ2]c = [X1, X2] + (LX1ξ2 − LX2ξ1) +
1

2
d0(ξ1(X2)− ξ2(X1)), (3.26)

for Xi ∈ Γ(TM), ξi ∈ Γ(T ∗M). We call (3.26) the c-bracket. It of course satisfies the axioms
C1-C5. We will comment on the relations of DFT and generalized geometry in Section 5.3.

A few comments are in order. First, it is not always true that a Courant algebroid is
defined by Lie bialgebroids [111]. Second, we consider a class of Courant algebroids called
exact [109] in the following.

3.5 Vaisman algebroid and doubled structure

In this section, we study doubled aspects of Vaisman algebroids. It has been discussed that
the gauge symmetry algebra of DFT, which is governed by the C-bracket, is characterized
by an algebroid proposed by Vaisman [72, 73]. We call this the Vaisman algebroid. In
the following, we introduce the notion of the Vaisman algebroid and discuss its doubled
structures.

The definition of the Vaisman algebroid is the following. Let V π−→ M be a vector
bundle over a manifold M . We introduce a non-degenerate symmetric bilinear form (·, ·) :
Γ(V)×Γ(V)→M ×C and an anchor ρV : V → TM . A map D : C∞(M)→ Γ(V) is defined
through (Df, e) = 1

2
ρV(e)·f for e ∈ Γ(V) and f ∈ C∞(M). When a skew-symmetric bracket
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[·, ·]V on Γ(V) satisfies the following axioms V1-V2, then a Vaisman algebroid is defined by
(V , [·, ·]V, ρV, (·, ·)):

Definition 3.5.1. Vaisman algebroid is defined by the combination of structures (V , [·, ·]V, ρV, (·, ·))
and Axiom V1, V2.

• a vector bundle V over a manifold M . V π−→M

• Vaisman bracket [·, ·]V : Γ(V)× Γ(V)→ Γ(V), this is an anti-symmetric bracket.

• an anchor map ρV : V → TM .

• a non-degenerate symmetric bilinear form(·, ·)

Axiom V1. [e1, fe2]V = f [e1, e2]V + (ρV(e1) · f)e2 − (e1, e2)Df .

Axiom V2. ρV(e1) · (e2, e3) = ([e1, e2]V +D(e1, e2), e3)+ (e2, [e1, e3]V +D(e1, e3)).

Here e1, e2 ∈ Γ(V), f ∈ C∞(M), and D : C∞(M) → Γ(V) is defined through (Df, e) =
1
2
ρV(e) · f for e ∈ Γ(V) and f ∈ C∞(M).

Compared to the definition of Courant algebroid, Axiom V1 corresponds to Axiom C3
and Axiom V2 to Axiom C5. The Vaisman algebroid is therefore a further generalization
of the Courant algebroid. It is also consistent with [110].

Following the prescription given by Liu-Weinstein-Xu [102] on Courant algebroids, we
examine doubled aspects of Vaisman algebroids. Given a Lie algebroid (E, [·, ·]E, ρ) and its
dual (E∗, [·, ·]E∗ , ρ∗) over a manifold M , we consider a vector bundle V = E⊕E∗. Note that
we never assume the Lie bialgebroid structures on (E,E∗). We then define non-degenerate
bilinear forms (·, ·)± on V as

(e1, e2)± =
1

2

(
〈ξ1, X2〉 ± 〈ξ2, X1〉

)
, (3.27)

where ei = Xi + ξi ∈ Γ(V) (i = 1, 2), Xi ∈ Γ(E), ξi ∈ Γ(E∗) and 〈·, ·〉 is the inner product
between E and E∗. We next define a skew-symmetric bracket [·, ·]V in Γ(V) as

[e1, e2]V = [X1, X2]E + Lξ1X2 − Lξ2X1 − d∗(e1, e2)−

+ [ξ1, ξ2]E∗ + LX1ξ2 − LX2ξ1 + d(e1, e2)−, (3.28)

where LX ,Lξ, d∗, d are natural Lie derivatives and de Rham differentials defined on Γ(E),Γ(E∗).
We employ the morphism ρV = ρ + ρ∗ as the anchor in V . The map D : C∞(M) → Γ(V)
is defined by (Df, e) = 1

2
ρV(e) · f which is expressed as D = d + d∗. The expression (3.28)

is nothing but the one defined in (3.25) but we here again stress that we never assume that
(E,E∗) is a Lie bialgebroid, i.e. the derivation condition (3.18) is not satisfied in general.
In the following, we show that (E⊕E∗, ρ+ρ∗, [·, ·]V, (·, ·)+) introduced above indeed defines
a Vaisman algebroid, but not a Courant algebroid.
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We now examine to what extent the axioms C1-C5 for the Courant algebroid are lacked
due to the failure of the derivation condition. The auxiliary relations needed in the process
of proof are the following two equations.

T (e1, e2, e3) ≡
1

3
(([e1, e2]c, e3)+ + c.p.)

=
1

2
〈[X1, X2]E, ξ3〉+ 〈[ξ1, ξ2]E∗ , X3 + ρ(X3)(e1, e2)− − ρ∗(ξ3)(e1, e2)−〉,

(3.29)

([e1, e2]V, e3)− + c.p. = T (e1, e2, e3)

+ [{ρ(X3)(e1, e2)− + 2ρ∗(ξ3)(e1, e2)− − 〈[ξ1, ξ2]E∗ , X3〉}+ c.p.].

(3.30)

For detailed calculations, see Appendix A.3-A.7.

Axiom C1

First, we check the Jacobiator of the Vaisman bracket [·, ·]V . Expanding the left-hand side
of the (3.19), we obtain the following result.

[[e1, e2]V, e3]V + c.p. = I1 + I2, (3.31)

I1 = [[ξ1, ξ2]E∗ , ξ3]E∗ + [LX1ξ2 − LX2ξ1, ξ3]E∗ + [d(e1, e2)−, ξ3]E∗

+ L[X1,X2]E+Lξ1
X2−Lξ2

X1−d∗(e1,e2)−ξ3

− LX3 [ξ1, ξ2]E∗ − LX3LX1ξ2 + LX3LX2ξ1 − LX3d(e1, e2)− + d([e1, e2]V, e3)− + c.p,
(3.32)

I2 = [[X1, X2]E, X3]E + [Lξ1X2 − Lξ2X1, X3]E − [d∗(e1, e2)−, X3]E

+ L[ξ1,ξ2]E∗+Lξ1
X2−Lξ2

X1+d(e1,e2)−X3

− Lξ3 [X1, X2]E − Lξ3Lξ1X2 + Lξ3Lξ2X1 + Lξ3d∗(e1, e2)−− d∗([e1, e2]V, e3)−+ c.p.
(3.33)

Here, terms in Γ(E∗) are written as I1, terms in Γ(E) are written as I2. Subsequent calcula-
tions are performed only with respect to I1. By interchanging X and ξ, the calculations for
I2 can also be reproduced. The above I1 contains terms that disappear due to the Jacobiator
of the Lie bracket. The following form can be obtained by rearranging them.

I1 = [LX1ξ2 − LX2ξ1, ξ3]E∗ + [d(e1, e2)−, ξ3]E∗ + LLξ1
X2−Lξ2

X1ξ3 − Ld∗(e1,e2)−ξ3

− LX3 [ξ1, ξ2]E∗ − LX3d(e1, e2)− + d([e1, e2]V, e3)− + c.p. (3.34)

The following formula is applied to I1. The derivation of this formula is given in Appendix
A.3.2

LX3 [ξ1, ξ2]E∗ + c.p. = [LX1ξ2 − LX2ξ1, ξ3]E∗ + LLξ1
X2−Lξ2

X1ξ3

+ 2[d(e1, e2)−, ξ3]E∗ + 2d(ρ∗(ξ3) · (e1, e2)−)− d〈[ξ1, ξ2]E∗ , X3〉

+ ιX3(d[ξ1, ξ2]V − Lξ1dξ2 + Lξ2dξ1) + c.p. (3.35)
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Then, finally, I1 can be summarised as follows.

I1 = dT (e1, e2, e3)− {K1 +K2}+ c.p. (3.36)

Here,

K1 = ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1),

K2 = Ld∗(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗ . (3.37)

Similarly, calculations with respect to I2, we obtainy the following results.

I2 = d∗T (e1, e2, e3)− {K3 +K4}+ c.p,

K3 = ιξ3(d∗[X1, X2]E − LX1d∗X2 + LX2d∗X1),

K4 = −
(
Ld(e1,e2)−X3 + [d∗(e1, e2)−, X3]E

)
. (3.38)

Thus, the Jacobiator of the Vaisman bracket [·, ·]V becomes

[[e1, e2]V, e3]V + c.p. = I1 + I2 = DT (e1, e2, e3)− (J1 + J2 + c.p.). (3.39)

where

J1 = K1 +K3

= iX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1) + iξ3(d∗[X1, X2]E − LX1d∗X2 + LX2d∗X1),

J2 = K2 +K4

= Ld(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗ + Ld∗(e1,e2)−X3 + [d∗(e1, e2)−, X3]E. (3.40)

In general, for any Xi, ξi, f , (J1 + J2 + c.p.)is not 0. Therefore, Axiom C1 is broken in
(V , [·, ·]V, ρV, (·, ·)+).

Axiom C2

Similarly, we check the Axiom C2. First, each side of (3.20) act for f respectively，we
obtain

ρV([e1, e2]V) · f = [ρV(e1), ρV(e2)]f. (3.41)

The left-hand side of the equation (3.41) expands as follows.

ρV([e1, e2]V) · f

= [ρ(X1), ρ(X2)] · f + ρ(Lξ1X2) · f − ρ(Lξ2X1) · f −
1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉) · f

+ [ρ∗(ξ1), ρ∗(ξ2)] · f + ρ∗(LX1ξ2) · f − ρ∗(LX2ξ1) · f +
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉) · f,

(3.42)

where d∗ = ρ∗∗d0, d = ρ∗d0.d0 is the differential operator on Γ(T ∗M).
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The right-hand side of the equation (3.41) expands as follows.

[ρV(e1), ρV(e2)]f

= [ρ(X1), ρ(X2)]f + [ρ∗(ξ1), ρ(X2)]f + [ρ(X1), ρ∗(ξ2)]f + [ρ∗(ξ1), ρ∗(ξ2)]f. (3.43)

The closs terms for the two and three X, ξ entries on the right-hand side become

[ρ(X), ρ∗(ξ)]f = (ρ(X)ρ∗(ξ)− ρ∗(ξ)ρ(X)) · f

= ρ(X)ρ∗(ξ) · f + (ρρ∗∗d0〈ξ,X〉) · f − 〈ξ,LdfX〉 − ρ(LξX) · f. (3.44)

However, the following formulae are used

ρ∗(ξ)ρ(X) · f = −ρρ∗∗d0〈ξ,X〉 · f + 〈ξ,LdfX〉+ 〈df,LξX〉. (3.45)

Therefore, the difference between the left and right sides of (3.41) is

ρV([e1, e2]V) · f − [ρV(e1), ρV(e2)]f

= −〈ξ1,
(
LdfX2 − [X2, d∗f ]E

)
〉+ 〈ξ2,

(
LdfX1 − [X1, d∗f ]E

)
〉

+
1

2

(
ρρ∗∗ + ρ∗ρ

∗
)
d0(〈ξ1, X2〉 − 〈ξ2, X1〉) · f. (3.46)

In general, the right-hand side is not 0 for any Xi, ξi. Therefore, Axiom C2 is broken in
(V , [·, ·]V, ρV, (·, ·)+).

Axiom C3

Next, we check Axiom C3. Using ei = Xi+ ξi,the left-hand side of the (3.21) can be written
as

[e1, fe2]V = [X1, fX2]V + [X1, fξ2]V + [ξ1, fX2]V + [ξ1, fξ2]V. (3.47)

Here, from the definition of the Vaisman bracket, the right-hand side of (3.47) expands as
follows.

[X1, fX2]V = [X1, fX2]E,

[X1, fξ2]V = f [X1, ξ2]V + (ρ(X1) · f)ξ2 −
1

2
Df〈ξ2, X1〉,

[ξ1, fX2]V = f [ξ1, X2]V + (ρ∗(ξ1) · f)X2 −
1

2
Df〈ξ1, X2〉,

[ξ1, fξ2]V = [ξ1, fξ2]E∗ . (3.48)

Adding up all the right-hand sides of the four equations in (A.57) yields the following result.

[e1, fe2]V = f [e1, e2]V + (ρ(e1)f)e2 −Df(e1, e2)+. (3.49)

Therefore, Axiom C3 holds in (V , [·, ·]V, ρV, (·, ·)+).
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Axiom C4

Next, we check Axiom C4. The left-hand side of the (3.22) equation expands as follows.

(Df,Dg)+ =
1

2
(ρ∗ρ

∗d0f + ρρ∗∗d0f)g. (3.50)

In general, the anchor ρ is not antisymmetric. That is, ρρ∗∗ = −ρ∗ρ∗ does not hold.
Therefore, the right-hand side of (3.50) does not equal 0 and Axiom C4 is broken at
(V , [·, ·]V, ρV, (·, ·)+). The superscript ∗ attached to the anchor means adjoint operator,
which is defined by the transpose of the original operator through the inner product.

ρ : E → TM ρ∗ : T ∗M → E∗

ρ∗ : E
∗ → TM ρ∗∗ : T

∗M → E (3.51)

Thus, ρρ∗∗ : T ∗M → TM and ρ∗ρ
∗ : T ∗M → TM .

As an aside, If derivation condition is satisfied, the anchor becomes antisymmetric. This
is shown in the Proposition 3.4 of [108]. In general, the properties of Lie subalgebras yield
the following relations.

(LdfX + [d∗f,X]E) ∧ Y

= −f
(
d∗[X,Y ]E + LY d∗X − LXd∗Y

)
+
(
d∗[X, fY ]E − LXd∗(fY ) + LfY d∗X

)
. (3.52)

Proposition 3.4 shows that the right-hand side of (3.67) becomes 0 by imposing the deriva-
tion condition. In other words, it can be confirmed that when the derivation condition is
satisfied, the following relation is established incidentally.

LdfX + [d∗f,X]E = 0. (3.53)

It can be shown that ρ is not antisymmetric unless (3.53) is satisfied. See Appendix A.6 for
details. Therefore, if the derivation condition is satisfied, rho is always antisymmetric and
Axiom C4 holds. Conversely, if the derivation condition is not imposed, the case where the
anchor is not antisymmetric cannot be ruled out.．

Axiom C5

Finally, we check the axiom C5. From the relation (3.29) for T (e1, e2, e3) , the following two
equations hold.

([e, e1]V, e2)+ = T (e, e1, e2) +
1

2
ρV(e) · (e1, e2)+ −

1

2
ρV(e1) · (e, e2)+, (3.54)

(e1, [e, e2]V)+ = T (e, e2, e1) +
1

2
ρV(e) · (e2, e1)+ −

1

2
ρV(e2) · (e, e1)+. (3.55)

Adding the left and right hand sides of (3.54) and (3.55) respectively, we obtain,

([e, e1]V, e2)+ + (e1, [e, e2]V)+

= T (e, e1, e2) +
1

2
ρV(e) · (e1, e2)+ −

1

2
ρV(e1) · (e, e2)+

+ T (e, e2, e1) +
1

2
ρV(e) · (e2, e1)+ −

1

2
ρV(e2) · (e, e1)+. (3.56)
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Using the antisymmetry of T , we can rewrite the (3.56) as

ρV(e) · (e1, e2)+ = ([e, e1]V, e2)+ + (e1, [e, e2]V)+ +
1

2
ρV(e1) · (e, e2)+ +

1

2
ρV(e2) · (e, e1)+

([e, e1]V +D(e, e1)+, e2)+ + (e1, [e, e2]V +D(e, e2)+)+. (3.57)

Therefore, Axiom C5 holds in (V , [·, ·]V, ρV, (·, ·)+). The details of these calculations are
given in Appendix A.5 and A.7. It can now be shown that the Vaisman algebroid is obtained
by the double of two dual Lie algebroid. This is consistent with the discussion in [110].

Conversely, we consider the split of the Vaisman algebroid with the Dirac structure. It is
shown that when there are Dirac subbundles L, L̃ of a Courant algebroid (C, [·, ·]c, ρc, (·, ·)),
namely, L, L̃ are maximally isotropic with respect to (·, ·), satisfing C = L⊕L̃ and involutive
(integrable), then the vector bundle L̃ is regarded as the dual bundle of L under the natural
paring 2(·, ·). Given these structures, it is shown that (L, L̃) becomes a Lie bialgebroid.
We briefly demonstrate this fact following the discussion in [102]. Before showing the above
statement, we first refer the Proposition 2.3 in [102]:

Proposition 2.3 in [102]. If L is an integrable isotropic subbundle of a Courant algebroid
(C, [·, ·]c, ρc, (·, ·)), then (L, [·, ·]c, ρc|L) becomes a Lie algebroid.

Here the isotropy is defined with respect to the bilinear form (·, ·). Namely, for any
X,Y ∈ Γ(L), they satisfy (X,Y ) = 0. This proposition is confirmed by showing that
the bracket [·, ·]c on L satisfies the Jacobi identity. This immediately follows from the
relation (3.19) in axiom C1 of Courant algebroids and the isotropic nature of L. Due to the
proposition 2.3, any Dirac structures L, L̃ in a Courant algebroid become Lie algebroids.
Their anchors are defined by ρ = ρc|L, ρ∗ = ρc|L̃.

By its defining axiom C5, for X ∈ Γ(L), ξ ∈ Γ(L̃), one can show that

[X, ξ]c = −LξX +
1

2
d∗〈ξ,X〉+ LXξ −

1

2
d〈ξ,X〉. (3.58)

Here in deriving (3.58), we have used the fact that L, L̃ are Lie algebroids and isotropic.
With this relation, the following Lemma 5.2 in [102] follows:

Lemma 5.2 in [102]. Given Dirac structures L, L̃ such that C = L ⊕ L̃ for a Courant
algebroid C, then the following relations hold:

Ld∗fξ = −[df, ξ]L̃, LdfX = −[d∗f,X]L. (3.59)

Here d, d∗ are induced de Rham differentials on L and L̃.

This is shown as follows. By the axiom C4, one first find the relation

ρ∗ · d = −ρ · d∗. (3.60)

Then using this relation, we find

[ρ∗(ξ), ρ(X)] = ρ(LξX)− ρ∗(LXξ) + ρ∗(d〈ξ,X〉), (3.61)
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where we have assumed the axiom C2 and used the relation (3.60). On the other hand, by
using the properties of Lie algebroids, we calculate

ρ∗(d〈ξ,X〉) · f = [ρ∗(ξ), ρ(X)]f − ρ(LξX) · f + ρ∗(LXξ) · f + 〈Ld∗fξ + [df, ξ]L̃, X〉. (3.62)

comparing the above relations, one proofs the first part in (3.59). Performing the same
calculus by exchanging ξ ↔ X the latter also follows.

Given the Lemma 5.2, now we focus on the Jacobiator of the Courant bracket. As we
have shown before, if L, L̃ are Lie algebroids, we have

[[e1, e2]c, e2]c + c.p. = DT (e1, e2, e3)− (J1 + J2 + c.p.), (3.63)

where J1, J2 are given in (3.40). Since C = L⊕ L̃ satisfies the axiom C1, we have J1 + J2 +

c.p. = 0. Due to the Lemma 5.2, one can show that J2 = 0 and the above condition implies
J1 + c.p. = 0. If we take e1 = X1, e2 = X2, e3 = ξ3, then this condition yields

d∗[X1, X2]L − LX1d∗X2 + LX2d∗X1 = 0. (3.64)

This is nothing but the derivation condition (3.18) for Lie bialgebroids. As we have men-
tioned before, Dirac structures L, L̃ in a Courant algebroid defines a Manin triple (C, L, L̃).

We then in turn switch to the discussion on Vaisman algebroids. A Dirac structure on a
Vaisman algebroid V is defined by a maximally isotropic subbundle in V with respect to a
bilinear form (·, ·) defined on Γ(V). Now we assume that there are Dirac structures L, L̃ such
that V = L⊕ L̃ in a Vaisman algebroid V . Indeed, there is a Dirac structure in a Vaisman
algebroid defined in a para-Kähler manifold [72,73]. For Vaisman algebroids, however, only
the axioms C3 and C5 of Courant algebroids are satisfied. Obviously, the proposition 2.3
in [102] does not follow since it requires the axiom C1. Therefore, the bracket does not
satisfy the Jacobi identity and L, L̃ are not Lie algebroid in general. Even though they have
Lie algebroid structures, since V = L ⊕ L̃ does not satisfy the axioms C2 and C4, Lemma
5.2 in [102] does not hold. Therefore we conclude that the Dirac structures L, L̃ in Vaisman
algebroids do not satisfy the derivation condition and they never define a Lie bialgebroid in
general. It is known that a Lie algebroid L and its dual L∗ form a Lie bialgebroid (L,L∗)

if and only if the pair (L,L∗) defines differential Gerstenhaber algebras [114]. This means
that a differential operator d∗ (d) is compatible with the Schouten-Nijenhuis bracket [·, ·]S
([·, ·]∗S) in L (L∗). This will be explicitly seen in the DFT viewpoint in the next section. In
particular, we will explicitly show that the exterior algebras of DFT defined on the Kaluza-
Klein and winding spaces are incompatible with the derivation condition need for the Lie
bialgebroid.

3.6 Doubled structures of other algebroids

Now, we are interested in what kind of algebroids equipped with the C-bracket are allowed
other than the Vaisman and the Courant algebroids. This section discusses algebroid struc-
tures given by C-bracket more generally. First, we focus on each Axiom and write down
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all the possible algebroid structures that with the C-bracket. In general, Axioms C1-C5 of
a Courant algebroid are not independent with each other [110]. Indeed, Axiom C5 implies
C3, and C2 implies C4. Only Axiom C1 is independent of the other Axioms. Therefore, the
possible combinations of Axioms in the general case are found to be

(C1), (C2, C4), (C3), (C4), (C3, C5),

(C1, C2, C4), (C1, C3), (C1, C4), (C1, C3, C5),

(C2, C3, C4), (C2, C3, C4, C5),

(C3, C4), (C3, C4, C5)

(C1, C2, C3, C4), (C1, C2, C3, C4, C5),

(C1, C3, C4), (C1, C3, C4, C5) (3.65)

If we adopt the C-bracket in (3.65) to construct algebroids with doubled structure, then C3
and C5 are automatically satisfied. The possible combinations are limited to the following.．

(C1, C3, C5), (C2, C3, C4, C5), (C3, C5),

(C3, C4, C5), (C1, C2, C3, C4, C5), (C1, C3, C4, C5) (3.66)

In (3.66), (C1,C2,C3,C4,C5) and (C3,C5) correspond to the Courant and the Vaisman
algebroids, respectively. An algebroid defined by (C2,C3,C4,C5) is known to be the pre-
Courant algebroid [115]. An algebroid by (C3,C4,C5) has been introduced in [116] and is
called the ante-Courant algebroid. On the other hand, the other possibilities (C1,C3,C5),
(C1,C3,C4,C5) have not been discussed in the literature. Since Axiom C1 means the (modi-
fied) Jacobi identity, we call (C1,C3,C5) the Jacobi Vaisman algebroid while (C1,C3,C4,C5)
the Jacobi ante-Courant algebroid. Note that, this “Jacobi” is not related to the Jacobi struc-
ture proposed by Lichnerowicz which is a generalization of the Poisson structure. All of these
algebroids are summarized in Figure 3.1. We collectively call these the DFT algebroids.
They are organized into two parts. One is those with the Jacobi identity corresponding to
the right flow in Figure 3.1. The other is the ones without the Jacobi identity in the left
flow.

3.6.1 Doubled structures of Jacobi-Vaisman and Jacobi ante-Courant alge-
broids

We first consider the Jacobi Vaisman algebroid in the series of the right flow in Figure 3.1.
The Jacobi Vaisman algebroid is obtained by imposing Axiom C1 to a Vaisman algebroid.
We start from the Vaisman algebroid (V , [·, ·]C, ρV, (·, ·)+) made by a pair of Lie algebroids
(E,E∗) and impose Axiom C1 to that. As we have seen before, Axiom C1 needs conditions
J1 = J2 = 0. The condition J1 = 0 is nothing but the derivation condition (3.18) itself. On
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Courant algebroid
(C1, C2, C3, C4, C5)

Vaisman algebroid
(C3, C5)

ante-Courant algebroid
(C3, C4, C5)

pre-Courant algebroid
(C2, C3, C4, C5)

Jacobi ante-Courant algebroid
(C1, C3, C4, C5)

Jacobi-Vaisman algebroid
(C1, C3, C5)

+ C4 + C1

+ C1

+ C1

+ C4+ C2

+ C2

Figure 3.1: A list of algebroids allowed by the combinations of Axioms C1- C5. They are classified
into the two sequences according to the logical structures of axioms.

the other hand, if we assume the derivation condition (3.18), we find

0 = (LdfX + [d∗f,X]E) ∧ Y

= −f
(
d∗[X,Y ]E + LY d∗X − LXd∗Y

)
+
(
d∗[X, fY ]E − LXd∗(fY ) + LfY d∗X

)
(3.67)

for any X,Y ∈ Γ(E). A similar result holds for the dual of the (3.18). Therefore, we obtain
the following relations

LdfX = −[d∗f,X]L (3.68)

If we consider X = d∗(e1, e2)+, ξ = d(e1, e2)+ in equation (3.68), we have J2 + c.p. = 0.
Therefore, it is sufficient to impose the derivation condition to make J1 + c.p. = 0 and J2 +

c.p. = 0. Therefore, the derivation condition is the only necessary condition for the Jacobi
Vaisman algebroid. However, as we will see in below, this condition induces Axioms C2 and
C4. Let us first examine Axiom C4. Given the Vaisman algebroid (V , [·, ·]C, ρV, (·, ·)+), we
find the equation (3.22) is evaluated as (3.50). Note that the superscript •∗ on the anchor
means the adjoint operator, which is defined by the transposition of the original operator
through the inner product 〈·, ·〉. Namely, it is defined by 〈ξ, ρE(X)〉 = 〈ρE∗(ξ), X〉 for any
X ∈ Γ(E), ξ ∈ Γ(E∗). The following is the summary of the anchor structures,

ρ : E → TM, ρ∗ : T ∗M → E∗,

ρ∗ : E
∗ → TM, ρ∗∗ : T

∗M → E. (3.69)

The rightmost side of the equation (3.50) seems to be generally non-zero. However, as we
have clarified, the derivation condition (3.18) induces the condition (3.68). If we consider
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X = df in (3.68), we obtain

d∗

(
ρEρ

∗
E∗(d0f) · f

)
= 0, ∀f ∈ C∞(M). (3.70)

This means

0 = ρEρ
∗
E∗(d0f) · f = 〈ρEρ∗E∗(d0f), d0f〉. (3.71)

The result (A.65) is equivalent to the condition that the right-hand side of (3.50) vanishes.
This also means the anti-symmetric property of the anchor map:

ρEρ
∗
E∗ = −ρE∗ρ∗E. (3.72)

Therefore Axiom C4 is automatically satisfied by imposing the derivation condition (3.18).
Next, we clarify Axiom C2. Given the Vaisman algebroid (V , [·, ·]C, ρV, (·, ·)+), we calcu-

late the difference between the two sides of the equation (3.20). The result is

ρV([e1, e2]V) · f − [ρV(e1), ρV(e2)]f

= −〈ξ1,
(
LdfX2 − [X2, d∗f ]E

)
〉+ 〈ξ2,

(
LdfX1 − [X1, d∗f ]E

)
〉

+
1

2

(
ρEρ

∗
E∗ + ρE∗ρ∗E

)
d0(〈ξ1, X2〉 − 〈ξ2, X1〉) · f. (3.73)

It is obvious that the right-hand side of (3.73) vanishes by the conditions (3.68) and (3.72)
that are induced by (3.18). Then, Axiom C2 is automatically satisfied due to the derivation
condition.

In summary, as long as we employ the C-bracket and the doubled structure, it is impos-
sible to construct the Jacobi Vaisman algebroid that satisfies only Axioms C1, C3, C5. The
same is true even for the Jacobi ante-Courant algebroid. However, we stress that the result
in this section does not mean that these algebroids are forbidden in general. Our discussion
critically depends on the doubled structure of the C-bracket. If one does not persist on the
doubled structure or the C-bracket, there is still room for these algebroids by defining a
suitable bracket, instead of the C-bracket, that satisfies appropriate axioms.

3.6.2 Doubled structures of ante- and pre-Courant algebroids

Next, we consider the series of the left flow in Figure 3.1. We will clarify the compatibility
conditions between the doubled structures and the C-bracket for these algebroids. Compared
with the Jacobi Vaisman and the Jacobi ante-Courant algebroids, Axiom C1 is not required
for ante- and pre-Courant algebroids.

First, we consider the ante-Courant algebroid. This is obtained by imposing Axiom
C4 to a Vaisman algebroid. Again, we consider the Vaisman algebroid (V , [·, ·]C, ρV, (·, ·)+)
made by a pair of Lie algebroids (E,E∗). The only condition that we need for ante-Courant
algebroids is the anti-symmetric nature of the anchor (3.72). In the previous section, we
showed that (3.72) is induced by the derivation condition but the converse is not true.
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Therefore, even though the condition (3.72) is imposed, this does not imply the Jacobi
identity and Axiom C1. The same is true for Axiom C2.

For the pre-Courant algebroid, we need to impose Axiom C2 in addition to C4 to the
Vaisman algebroid. From the discussion in the previous section, the condition (3.68) for
Axiom C2 implies the anti-symmetric nature of the anchor (3.72) required by Axiom C4.
Then we conclude that only the condition for the pre-Courant algebroid is the equation
(3.68).

A comment on the condition (3.68) is in order. When we take X = d∗g in the first
equation in (3.68), we have

[d∗g, d∗f ] = Ldfd∗g = d∗(ιdfd∗g), f, g ∈ C∞(M). (3.74)

Since ιdfd∗g = 〈df, d∗g〉 = 〈d0f, ρEρ
∗
E∗(d0g)〉, we find

[d∗g, d∗f ] = d∗

(
ρEρ

∗
E∗(d0g)[f ]

)
. (3.75)

Here we have used the notation X[f ] = 〈X, d0f〉 for vectors X ∈ Γ(TM). Now we define a
structure {g, f} by

{g, f} = π(d∗g)[f ], (3.76)

where π = ρEρ
∗
E∗ . It is easy to show that this structure is skew-symmetric and possesses

the bilinear nature. Since π(d∗g) belongs to Γ(TM), the operator {g, ·} acts on functions
as a derivation. Furthermore, by acting ρE on the both sides of the relation (3.75), one can
show that

πd0

({
{g, f}, h

})
=
[
[πd0g, πd0f ], πd0h

]
, f, g, h ∈ C∞(M). (3.77)

Since the right-hand side is given by the Lie bracket, the structure {{g, f}, h} satisfies the
Jacobi identity. These properties are enough to conclude that {g, f} provides a non-trivial
Poisson structure in M . One finds that π̄ = ρE∗ρ∗E also defines another Poisson structure.
Although, this result was discussed first in [108] in the context of Lie bialgebroids, we stress
that the essential property is (3.68) and the condition for the pre-Courant algebroid is
necessary to define non-trivial Poisson structures in M .

3.7 From algebroids to algebras on group manifolds

In this section, we make a brief comment on the doubled structures discussed in this paper
and those in group manifolds. The notion of the “double” has been originally proposed
in the context of Hopf algebras by Drinfel’d [107]. A classical limit of this operation is
implemented in Lie algebras [103,104]. A well known fact is that a Lie algebra is defined by
the left invariant vectors at the unit element of a group manifold. On the other hand, DFT
on group manifolds has recently been considered [117]. In this setup, the manifest T-duality
of DFT is generalized to the so-called Poisson-Lie T-duality [118]. An essential feature of the
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Poisson-Lie T-duality lies in the structure of the Drinfel’d double of the underlying group
manifold. Indeed, the Lie algebras associated with the abovementioned group is given by
the Drinfel’d double. We note that it is possible to introduce the para-Hermitian nature
even for group manifolds [119]. It is therefore natural to consider the relation between
the doubled structure of the algebroids discussed here and the Lie algebras of the group
manifold. The left invariant vector fields that define the Lie algebra of the group manifold
are essentially given by a point on the group, namely, the unit element. Therefore, in order
to find the associated Lie algebras from the algebroids, we consider only the unit element
on the group manifold and restrict the vector space to the one for the left invariant vectors.
This procedure is achieved by setting ρV = 0. Then we have ρ∗Ed0 = d = 0, ρ∗E∗d0 = d∗ = 0,
D = 0. Under these conditions, Axioms C1 - C5 are rewritten as

Axiom C1 Jac(e1, e2, e3) = 0. The C-bracket becomes a Lie bracket.

Axiom C2 This becomes trivial by ρV = 0.

Axiom C3 [e1, fe2]C = f [e1, e2]C for any f ∈ C∞(M). This shows the bilinearity of the
Lie bracket.

Axiom C4 This becomes trivial by D = 0.

Axiom C5 ([e1, e2]C, e3)+ + (e1, [e1, e3]C)+ = 0.

The last one is the compatibility condition between [e1, e2]C and (·, ·)+. In general, a Lie
algebra that has the compatible bilinear form (·, ·)+ is called a quadratic Lie algebra. It
is also known that quadratic Lie algebras are infinitesimal algebras of Poisson-Lie groups.
Therefore, we can see that a quadratic Lie algebra (V , [·, ·]C, (·, ·)+) is obtained by the
Courant algebroid made by the Drinfel’d double on the group manifold.

Now let us consider the Vaisman algebroid. As we have shown, the Jacobi identity is
broken by the following quantities J1, J2:

J1 = ιX3

(
d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1

)
+ ιξ3

(
d∗[X1, X2]E − LX1d∗X2 + LX2d∗X1

)
,

J2 =
(
Ld∗(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗

)
−
(
Ld(e1,e2)−X3 + [d∗(e1, e2)−, X3]E

)
. (3.78)

When we set ρV = 0, d = 0, d∗ = 0, then it is obvious that J1 = J2 = 0. Thus, even if we
consider the algebroid where Axiom C1 does not hold, going to the algebra, we end up with
Jac(e1, e2, e3) = 0 and the bracket becomes a Lie bracket. Therefore, all the algebroids with
doubled structure discussed in this paper reduce to the quadratic Lie algebras at the unit
of the group manifold. Since the doubled structure of algebroids is essentially irrelevant to
the group action, the DFT algebroids discussed in this paper are non-group generalizations
of the quadratic Lie algebras defined by the Drinfel’d double. This would be a key property
for the further generalizations of the Poisson-Lie T-duality.
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4 | Generalized and Doubled Geometry

In Chaper 3, the gauge symmetry of the DFT and related algebroid structures were dis-
cussed. Of particular importance is the fact that the Vaisman algebroid specified by the
C-bracket was found to have a doubled structure. We would like to investigate how this
doubled structure is expressed in the DFT. To do so, we should further understand the
geometry of the DFT.

In general, as a geometrical framework related to T-duality is generalized geometry．
This framework is presented by Hitchin [37]. It introduced the generalized tangent bundle
TM = TM ⊕T ∗M , which was a generalized tangent bundle. It is a geometry with O(D,D)

symmetry, which is a T-duality group as a structure group. Generalised geometry has led
to various physical results [43–45,48,120,121].

On the other hand, as mentioned in Chapter 2, DFT was introduced In order to make
T-duality explicit. DFT is established on the doubled spacetime (x, x̃) which is combi-
nation of the usual physical coordinates x and the winding coordinates x̃.This cannot be
represented by the known Riemannian geometry, nor by generalized geometry. This sug-
gests the existence of a new geometry in the background. This geometry is called doubled
geometry. The mathematical understanding of doubled spacetime has progressed rapidly
in recent years. More recently, in relation to para-Hermitian geometry [72–76] and Born
geometry [76]. They are expected to serve as a framework for “grobal” doubled geometry.

In this Chapter, we first describe the basic setting of generalised geometry and clarify
its relation to Courant algebroid discussed in Chapter 2. Furthermore, we construct para-
Hermitian geometry and Born geometry and discuss their relation to generalised geometry.

4.1 Generalized geometry

The main idea of generalised geometry is, roughly speaking replace the tangent bundle TM

by a generalised tangent bundle constructed by the direct sum TM ⊕ T ∗M , and on which
differential geometry is to be developed.

Definition 4.1.1. The generalised tangent bundle TM of a manifold M is the direct sum
of the ordinary tangent bundle TM and the cotangent bundle T ∗M TM ⊕ T ∗M .

From this definition, it is clear that TM ⊕ T ∗M is a vector space of dimension 2D.
However, there is no restriction on the basespace (manifold) M . In this case, the inner
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product in TM ⊕ T ∗M is naturally given as follows.

〈X1 + v1 +X2 + v2〉 =
1

2
(v1(X2) + v1(X2)) (4.1)

The following forms of metrology are therefore also naturally introduced.

ηMN =

(
0 1

1 0

)
. (4.2)

This ηMN is the O(D,D)-invariant metric. The structure group of TM is thus an O(D,D)

group. To preserve the invariance of the inner product, the generator G satisfies the following
equation.

〈G(X1 + v1), X2 + v2〉+ 〈X1 + v1,G(X2 + v2)〉 = 0. (4.3)

The generator G of the structure group O(D,D) is determined as follows.

G =

(
A β

B A−1t

)
(4.4)

However, A ∈ End(TM) and B is the antisymmetric 2-form Γ(∧2T ∗M). Also, β is the
antisymmetric 2-vector Γ(∧2TM). This is a composition of three transformations: the
general linear transformation G(D) with A, the B transformation and the β transformation.
In particular, the B-transform is defined as a shift with respect to the vector field X as
follows.

eB : (X1 + v1)→ (X1 + v1) + B(X). (4.5)

This can be written in matrix form as follows.

eB =

(
1 0

B 1

)
∈ O(D,D). (4.6)

Physically, this 2-form B corresponds to the Kalb-ramond field Bµν . The generalized Lie
derivative L generated by X1 +B ∈ (TM ⊕ ∧2T ∗M) can then be written as follows [122]．

LX1+B(X2 + v2) = LX1(X2 + v2)− ιX2B. (4.7)

Here, it is the usual Lie derivative with LX1 vector field X ∈ Γ(TM). In this case, the
first entry on the right-hand side is derived from the diffeomorphism map and the second
from the B-transform. This is the reason why it is explained that “In generalized geometry,
the diffeomorphism by the metric gµν and the gauge transformation in the anti-symmetric
2-form field Bµν are integrated and coexist”. However, in essence, if the structure group is
O(D,D), gµν and Bµν can coexist, not only in generalised geometry. The doubled geometry
described in next section is a good example. The generalised Lie derivative L̂ of the DFT
described in Chapter 3 also includes both the differential homomorphic mapping by the
metric gµν and the gauge transformation of the Bµν field.
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Also, the generaliezd Lie derivative L generated from the vector field X + v given by
Γ(TM) is [122], which can be written as follows.

LX1+v1(X2 + v2) = LX1X2 + LX1v2 − ιX2dv1

= [X1, X2] + LX1v2 − ιX2dv1

≡ (X1 + v1) ◦ (X2 + v2) (4.8)

Here, [X1, X2] is a Lie bracket (or commutator) for an ordinary vector field in Γ(TM),
and The ι, d are the inner and exterior products, respectively (see Sec 3.1). The right-
hand side of (4.8) is exactly the dorfman bracket operator ◦ of Sec 3.2. Therefore, the
structure generated by the generaliezd Lie derivative L in generalised geometry is a Courant
algebroid. In general, the antisymmetric construction of the dorfman brackt operator is a
Courant bracket. From (4.8), we can now give a concrete example of Courant bracket [·, ·]c
as follows.

[X1 + v1, X2 + v2]c =
1

2

(
(X1 + v1) ◦ (X2 + v2)− (X2 + v2) ◦ (X1 + v1)

)
=

1

2

(
([X1, X2] + LX1v2 − ιX2dv1)− ([X2, X1] + LX2v1 − ιX1dv2)

)
=

1

2

(
([X1, X2] + LX1v2 − LX2v1 + dιX2v1)

− ([X2, X1] + LX2v1 − LX1v2 + dιX1v2)
)

= [X1, X2] + LX1v2 − LX2v1 −
1

2
d(ιX1v2 − ιX2v1) (4.9)

This Courant bracket is also the earliest historically constructed concrete example of [109].
Moreover, for this Courant bracket, a twist by 3-form H ∈ Γ(∧3T ∗M) such that dH = 0

also The structure of the Courant algebroid as a whole is preserved.

[X1 + v1, X2 + v2]H = [X1 + v1, X2 + v2]c + ιX2ιX1H (4.10)

This H physically corresponds to H-flux. The twisted algebroid is discuss in Sec 5.6. The
generalised geometry is revolutionary in that it naturally incorporates B-fields and H-fluxes.
Physically, it gives a geometrical picture for the NS-NS sector of the supergravity theory
derived from string theory. This framework was applied to the study of (non-)geometric flux
in SUGRA [43–45,120,121]. Its relationship with the non-linear sigma model has also been
studied. The non-linear sigma model is a scalar field theory with non-linear coupling that
describes string theory in a curved background. In its Hamiltonian form, the diffeomor-
phism by the metric gµν and the gauge transformation of the Kalb-Ramond field Bµν can
be regarded not as a mere field transformation but as a (part of) canonical transformation
on a phase space. The canonical transformation corresponds to a general coordinate trans-
formation on the phase space and can be regarded as a geometric symmetry of the phase
space. Indeed, the generators generating the diffeomorphism and the gauge transformation
of the B-field in the Hamiltonian form can be regarded as the basic geometric structures
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of generalised geometry (generalised tangent bundle and algebroid as gauge algebra). It is
known that These are one-to-one correspondence [46]. Gates-Hull-Rocek geometry discov-
ered in the study of 2D non-linear sigma models with N = (2, 2) SUSY [47] (also called
bi-Hermitian geometry) and the generalised Kähler geometry defined in the framework of
generalised geometry are also known to be equivalent [38, 48]. Here, we only introduce the
definition of the generalised Kähler structure [38]. A generalised Kähler structure is defined
using a generalised (almost) complex structure. First, the generalised (almost) complex
structure is the following structure.

Definition 4.1.2. A generalized almost complex structure is an endomorphism J : TM ⊕
T ∗M → TM ⊕T ∗M for TM = TM ⊕T ∗M . J needs to satisfy 〈J ·, J ·〉 = 〈·, ·〉and J2 = −1.
From the properties of J , the vector space defined by J is of even-dimension. Furthermore, if
Γ(TM) is closed in Courant bracket [·, ·]c (4.9), J is called the generalised complex structure.．

Using J , the generalised Kähler structure is then defined as follows.

Definition 4.1.3. A generalized Kähler structure is a pair of two generalized complex
structures (J1, J2) such that In particular, one in which J1J2 − J2J1 = 0 and the product
J1J2 gives a positive-definite metric on TM .

Thus, there is no doubt that generalised geometry is a very useful framework for consider-
ing T-duality and related physics. However, it should be noted that only tangent bundles are
generalised. It is (type II) supergravity that is more compatible with generalised geometry,
not DFT. DFT geometry is a framwork such that the basespace M itself is doubled.

4.2 Doubled geometry

Doubled geometry was proposed by Hull in 2004 [54]. In doubled geometry, the bottom space
itself is doubled to 2D-dimensions. It is also a different framework from the generalized
geometry described above in that it doubles the bottom space itself to 2D-dimensions.
Doubled geometry is known to be highly compatible with the doubled spacetime (x̃, x) of
DFT.

Of course, the geometrical aspects of doubled spacetime were not always fully developed.
Immediately after doubled geometry started to attract attention as a geometry for DFT,
the following geometry was developed Many arguments relying on the space-time coordinate
(x̃, x), [123,124] and the frame-like formulation [51,52] and the metric-like formulation [124–
126]. The [127] attempted to bring these together and understand them more universally
as an analogy of Riemannian geometry. It was proposed that this structure is naturally
incorporated in a para-Hermitian (Kähler) manifold [72,73]. The para-Hermitian structure
is a basic ingredient to understand the doubled nature of space-time behind DFT. In the
following, we exhibit basic materials related to para-Hermitian geometries [74,76] and then
discuss algebroid structures realized in DFT. We introduce this geometry in the next section.
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4.2.1 para-Hermitian geometry

Before discussing the para-Hermitian structure, we first define an almost para-complex
manifold.

Definition 4.2.1. An almost para-complex manifold (M, K) is a differential manifold M
with a vector bundle endomorphism K : TM→ TM where K2 = +1. This K is called the
almost para-complex structure that satisfies the condition dim ker(K+1) = dim ker(K−1).

Obviously, the almost para-complex structure is a real analogue of the almost complex
structure J2 = −1. Given an almost para-complex structure K, the tangent bundle TM
is decomposed into the eigenbundles L, L̃ associated with the eigenvalues K = ±1. This
decomposition is performed via the projection operators P, P̃ that map elements in TM to
those in L or L̃:

P =
1

2
(1 +K), P̃ =

1

2
(1−K). (4.11)

The subbundles L, L̃ are distributions of TM. We stress that the para-complex structure
K provides a natural decomposition of vectors in doubled space-time.

Definition 4.2.2. A distribution is defined as follows. Let M be an m-dimensional C∞-
manifold. For any x ∈M , we can consider an n-dimensional (n ≤ m) subbundle ∆x ⊂ TxM .
We then consider a neighborhood of x, Nx ⊂ M . In Nx, there are n independent vector
fields X1, . . . , Xn. They define a linear span for any point y ∈ Nx. Namely, these n vector
fields generate a subbundle ∆y = {X1(y), . . . , Xn(y)}. For any x ∈ M , with a set ∆x, we
call ∆ =

∪
x∈M ∆x the n-dimensional distribution over M . This is also known as the C∞

n-plane distribution over M . A set of the smooth vector fields {X1, . . . , Xn} is called the
local basis of ∆.

We now discuss the notion of integrability. The integrability of a distribution is properly
represented by the Frobenius theorem. The Frobenius theorem is understood as a property
of vector fields. For any vector fields X,Y ∈ Γ(L) where L is a distribution, if their Lie
bracket [X,Y ]L belongs to L, then the distribution L is called involutive. The Frobenius
theorem states that a distribution L (resp. L̃) is completely integrable if and only if L (resp.
L̃) is involutive. When the eigenbundle L (resp. L̃) defined on an almost para-Hermitian
manifold is involutive, then the tensors NP , NP̃ defined in the following vanish:

NP (X,Y ) = P̃ [P (X), P (Y )], NP̃ (X,Y ) = P [P̃ (X), P̃ (Y )], (4.12)

where X,Y ∈ Γ(TM). We can define the Nijenhuis tensor associated with K by adding the
two tensors in (4.12): NK(X,Y ) = NP (X,Y ) +NP̃ (X,Y ). This is again a real analogue of
the Nijenhuis tensor defined on an ordinary complex manifold:

NK(X,Y ) =
1

4

{
[K(X), K(Y )] + [X,Y ]−K

(
[K(X), Y ] + [X,K(Y )]

)}
. (4.13)

The Nijenhuis tensor is a torsion on a (para-)complex manifold. When NK vanishes, K is
integrable. Then the definition of a para-complex manifold is given as follows:
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dω 6= 0 dω = 0

NK 6= 0
almost para-Hermitian
(almost symplectic)

almost para-Kähler
(symplectic)

NK = 0
para-Hermitian

(almost symplectic)
para-Kähler
(symplectic)

Table 4.1: The integrability and closeness of ω.

Definition 4.2.3. When K is integrable, namely, the Nijenhuis tensor NK vanishes identi-
cally, then an almost para-complex manifold (M, K) is a para-complex manifold.

Contrast to the ordinary complex manifolds, the notion of integrability for the two
distributions L and L̃ are totally independent with each other. Namely, the integrability of
L is defined through the condition NP (X,Y ) = 0 for any X,Y ∈ Γ(TM). This does not
imply NP̃ = 0 in general. Since the integrability condition is independent for L and L̃, we
can define a half-integrability in a para-complex manifold [74,76]:

Definition 4.2.4. An L-para-complex manifold is an almost para-complex manifold (M, K)

where only L is integrable. The same is true for L̃. When the L-para-complex and the L̃-
para-complex conditions are satisfied simultaneously, then (M, K) is a para-complex man-
ifold.

We next define an almost para-Hermitian manifold by introducing a metric η,

Definition 4.2.5. An almost para-Hermitian manifold (M, η,K) is an almost para-complex
manifold M equipped with a neutral metric η : TM × TM → R which satisfies the
compatibility condition η(K·, K·) = −η(·, ·). η is called the para-Hermitian metric.

By its definition, the distribution L is maximally isotropic with respect to η. Namely,
for any X,Y ∈ Γ(L), since they are elements of the eigenbundle with K = 1, we have
η(X,Y ) = 0 for a para-Hermitian metric η. The same is true even for L̃. Since η is
neutral, it follows that L and L̃ have the same rank D = 1

2
dimM. Given an almost para-

complex structure K and a compatible metric η, then we can define a non-degenerate 2-form
ω = ηK. This can be seen as an almost symplectic structure on M and it is not closed in
general dω 6= 0. This means that an almost para-Hermitian manifold (M, K, η) is an almost
symplectic manifold (M, ω) and vice-versa. When ω is closed, (M, K, η) and (M, ω) are
said to be almost para-Kähler and symplectic, respectively (see Table 4.1.) We note that a
symplectic manifold is a Poisson manifold.

The compatibility between η and ω results in that L and L̃ are Lagrangian subbundles
with respect to ω. Namely, for any X,Y ∈ Γ(L) (resp. Γ(L̃)), we have ω(X,Y ) = 0. We
note that even for the case where ω is not closed, we can define a Lagrangian subspace of
ω. Given the almost structures, an analogue of a Hermitian manifold is defined:

Definition 4.2.6. When (M, K) is an L-para-complex manifold, then an almost para-
Hermitian manifold (M, η,K) is an L-para-Hermitian manifold. This is also the same
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F F̃

p

M

Figure 4.1: Image of para-Hermitian manifold and foliation F , F̃．

for L̃. An almost para-Hermitian manifold that satisfies both the L- and L̃-integrability
conditions is a para-Hermitian manifold.

The subbundles L, L̃ on a para-Hermitian manifold is therefore Dirac structures. Namely,
they are maximally isotropic with respect to η and involutive.

An alternative representation of the Frobenius theorem states that a subbundle E ⊂ TM
is integrable if and only if it is defined by a regular foliation of M. Namely, an integrable
subbundle E ⊂ TM defines the tangent bundle of a foliation F in M. Therefore when L

and L̃ are integrable, then they have foliation structures:

L = TF and L̃ = T F̃ . (4.14)

Here the foliation F (resp. F̃) is given by the union of leaves
⨿

[p] M[p]. A leaf Mp is a
subspace of F (resp. F̃) that pass through a point p ∈ M and its tangent vectors are
specified by L (resp. L̃). The index space in the union is the leaf space M/F or M/F̃ .
For F , the local coordinate xµ is given along a leaf Mp while the one for the transverse
directions to leaves is x̃µ. This means that x̃µ is a constant on a leaf Mp in F (fig. 4.1).

The metric η overM can be seen as a map η : TM = L⊕ L̃→ T ∗M = L∗ ⊕ L̃∗. Then
the metric η defines the following two isomorphisms:

ϕ+ : L̃→ L∗ and ϕ− : L→ L̃∗. (4.15)

They map vectors in L̃ (resp. L) to forms in L∗ (resp. L̃∗). The converse is also true. Given
these isomorphisms, the following new isomorphisms are naturally defined:

Φ+ : TM→ L⊕ L∗ and Φ− : TM→ L̃⊕ L̃∗. (4.16)

In particular, the map Φ+ is utilized to relate DFT and generalized geometry and it is called
the natural isomorphism.

4.2.2 Born geometry

So far, we discuss that para-Hermitian geometry is based on the para-complex geometry
(M, K) with the newtral metric η. Furthermore, as a next step, by adding another metric
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H with the signature (2D, 0), para-Hermitian geometry can be further generalised. Such a
geometry is called Born geometry [76]. Discussions on sigma models based on Born geometry
are given in [77, 78, 119]. The relation between Born geometry and generalised geometry
(generalised Kähler structure) is discussed in [79].

Definition 4.2.7. Let (M, η, ω) be a para-Hermitian manifold. Let H be a Riemannian
metric. The following two equations are introduced as satisfying the following two equations.

η−1H = H−1η, ω−1H = H−1ω. (4.17)

In this case, the pair of structures (η, ω,H) is called the Born structure on mathcalM .
Also,(M, η, ω,H) is called Born geometry.

The Born structure (η, ω,H) contains three structures from the combination of each
element. The first is the para-Hermitian structure (ω,K) mentioned in the previous section,
and the following combatibility exists for K.

K2 = 1, ω(KX,KY ) = −ω(X,Y ). (4.18)

The second is the combination of (η,H). This structure is called the chiral structure J .
J = η−1H, and the following compatibility exists for J .

J2 = 1, η(JX, JY ) = η(X,Y ). (4.19)

The third is a combination of (ω,H). This structure is called the almost Hermitian structure
I. I = H−1ω and has the following compatibility.

I2 = −1, H(IX, IY ) = H(X,Y ). (4.20)

These three structures form a para-quotanic structure as follows. where , is an anti-
commutator

−I2 = J2 = K2 = 1, {I, J} = {J,K} = {K, I} = 0, KJI = 1. (4.21)

Finally, from studies on geometric quantisation and the geometry of quantum mechanics,
it is It is well known that the geometrical structure underlying the quantisation process is a
Hermitian structure. In this context, Born structure can be understood as a phase space (of
relativistic particles) and The symplectic structure defines a Hamiltonian flow on the phase
space. The relationship between each structure can be organised as in Table 4.2.

Using the 2D-Riemannian metric H, the Born geometry version of Levi-Civita connec-
tion as an analogy for Riemannian geometry in [76]. Torsion and Riemann curvature are
also calculated. In particular, the Riemannian curvature in Born geometry reproduces the
Riemann curvature ( or generalized Riemannian tensor in DFT ) initially presented in [127].



4.2. DOUBLED GEOMETRY | 61

−I2 = J2 = K2 = 1 I, J = J,K = K, I = 0 KJI = 1

I = −ω−1H = H−1ω J = η−1H = H−1η K = η−1ω = ω−1η
H(IX, IY ) = H(X,Y ) η(IX, IY ) = −η(X,Y ) ω(IX, IY ) = ω(X,Y )
H(JX, JY ) = H(X,Y ) η(JX, JY ) = η(X,Y ) ω(JX, JY ) = −ω(X,Y )
H(KX,KY ) = H(X,Y ) η(KX,KY ) = −η(X,Y ) ω(KX,KY ) = −ω(X,Y )

Table 4.2: The relationship between I, J,K and compatibility.
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5 | Geometric Realization of Algebroid

In Chaper 3, we discuss the algebroids and the doubled structures. It is shown that the Vais-
man algebroid defined by the C-bracket has a doubled structure. In Chapter 4, we discuss
the para-Hermitian geometry and its generalisation, the Born geometry, as the geometry of
DFT. We confirmed that doubled spacetime (x̃, x) can be naturally expressed under these
geometries.

In this chapter, we reproduce the Vaisman algebroid the DFT by C-bracket on the
para-Hermitian geometry. First, some necessary structures for component computation are
introduced. We then reproduce the Lie algebroids on para-Hermitian manifold. Using these
results, we discuss the algebraic origin of strong constraint.

5.1 Para-Dolbeault cohomology

In the previous section, it was confirmed that the para-Hermitian manifoldM is useful as a
mathematical description of doubled spacetime. However, to actually construct a Vaisman
algebroid on M, it is necessary to define operators such as external derivatives and inner
products, and to write them down so that they can be used to compute the components.

In this subsection, we define a para-Dolbeault cohomology in L, L̃. It is always true
that there is a natural exterior algebra on the tangent bundle over an almost para-complex
manifold M. We introduce the section of ∧kTM (the totally anti-symmetric k-th tensor
products of TM) and denote it as Âk(M). Since L, L̃ are subbundles in TM, we can define
exterior algebras in Γ(L) and Γ(L̃). If we define Ar,s(M) as the section of (∧rL) ∧ (∧sL̃),
then, we obtain the following decomposition:

Âk(M) =
⊕
k=r+s

Ar,s(M). (5.1)

Here we have defined the canonical projection operator πr,s : Âr+s(M) → Ar,s(M) that is
induced by P and P̃ (see the explicit example in the next subsection). We then define the
exterior derivatives acting on L and L̃:

d̃ : Ar,s(M)→ Ar+1,s(M), (5.2)

d : Ar,s(M)→ Ar,s+1(M). (5.3)

They are called the para-Dolbeault operators and have the following properties:

d2 = 0, d̃2 = 0, dd̃ + d̃d = 0. (5.4)
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Due to the nilpotency of the para-Dolbeault operators, we can define the para-Dolbeault
cohomology. This is a real analogue of the Dolbeault cohomology defined in a complex
manifold. For any A ∈ Γ(L), α ∈ Γ(L̃), the interior products ιA, ι̃α are defined:

ιA : Ar,s(M)→ Ar−1,s(M) and ι̃α : Ar,s(M)→ Ar,s−1(M). (5.5)

By these operations, we define the Lie derivatives on L and L̃:

LAξ = (dιA + ιAd)ξ, L̃αξ = (d̃ι̃α + ι̃αd̃)ξ. (5.6)

Here A ∈ Γ(L), α ∈ Γ(L̃), ξ ∈ Ar,s(M) are arbitrary (multi-)vectors. By a para-Hermitian
metric η, there is a natural C∞(M,R)-bilinear map on A1,0(M)×A0,1(M). We call this the
(symmetric) pairing. The pairing is denoted as (α,A) 7→ 〈〈α,A〉〉. This is an analogue of the
inner products between vectors and forms on TM and T ∗M. Here we note that L and L̃

are not necessarily dual with each other. When A ∈ Ar,0(M), α ∈ A0,s(M), r 6= s, then the
pairing is given by 〈〈α,A〉〉 = 0. In particular, for α ∈ A0,s(M) and A1, . . . , As ∈ A1,0(M),
we write

〈〈α,A1 ∧ · · · ∧ As〉〉 = α(A1, . . . , As). (5.7)

Similarly, for A ∈ Ar,0(M) and α1, . . . , αr ∈ A0,1(M) we write

〈〈α1 ∧ · · · ∧ αr, A〉〉 = A(α1, . . . , αr). (5.8)

Now we express the interior products (5.5) by these quantities. For α ∈ A0,s(M), ιAα is an
element of A0,s−1(M). Therefore, for A1, . . . , As−1 ∈ A1,0(M), it is written as

ιAα(A1, . . . , As−1) = α(A,A1, . . . , As−1). (5.9)

Similarly, for A ∈ Ar,0(M), ι̃αA is an element of Ar−1,0(M). Therefore by α1, . . . , αr−1 ∈
A0,1(M), it is written as

ι̃αA(α1, . . . , αr−1) = A(α, α1, . . . , αr−1). (5.10)

The interior product ιA (resp. ι̃α) is a degree −1 derivation on the exterior algebras of L̃
(resp. L):

ιA(α ∧ β) = (ιAα) ∧ β + (−1)sα ∧ ιAβ,

ι̃α(A ∧ B) = (ι̃αA) ∧B + (−1)rA ∧ ι̃αB. (5.11)

Here α ∈ A0,s(M), β ∈ A0,•(M), A ∈ Ar,0(M), B ∈ A•,0(M).

5.2 Vaisman algebroid on para-Hermitian manifold

Now we discuss the algebroid structure governed by the C-bracket (2.23) in DFT. The
doubled space-time on which DFT is defined is given by a flat para-Hermitian manifold



5.2. VAISMAN ALGEBROID ON PARA-HERMITIAN MANIFOLD | 65

M whose local coordinate is xM [74]. The tangent space TM is spanned by ∂M (M =

1, . . . , 2D). Vector fields on TM are decomposed by the projection operators P, P̃ defined
by the para-complex structure K. Namely, for Ξ = ΞM∂M ∈ TM, we have

ΞM∂M = Aµ(x, x̃)∂µ + αµ(x, x̃)∂̃
µ, (5.12)

where A ∈ Γ(L), α ∈ Γ(L̃). Here xM = (xµ, x̃µ) is the induced decomposition of the local
coordinate on the base space M. Therefore L is spanned by ∂µ (µ = 1, . . . , D) while L̃ is
spanned by ∂̃µ in the DFT framework. In a flat para-Hermitian manifold, there is always a
local frame where the para-Hermitian metric η is expressed as

ηMN =

(
0 1

1 0

)
. (5.13)

Since this metric induces a map L→ L̃:

ηMNA
N = AM (5.14)

as the way obvious with its index position, there is a natural isomorphism between L̃ and
L∗. With this isomorphism at hand, we can identify these spaces. We note that the metric
(5.13) implies that the inner product among X,Y ∈ Γ(L) is 〈X,Y 〉 = 0 and the same is true
even for L̃. This means that L and L̃ are maximally isotropic subbundles and TM = L⊕ L̃.

Given these structures, one can define the space of multi-vectors Âk(M) and the canon-
ical projectors πr,s. The projectors are defined, for example, as follows. The projectors in a
para-complex manifold with K = diag(−1,+1), in their apparent representation, are given
by

P =

(
0 0

0 1

)
, P̃ =

(
1 0

0 0

)
. (5.15)

We consider the case of r = 2, s = 0. The component expression of an element T ∈ Â2(M)

is denoted by

TMN =

(
tµν tµ

ν

tµν tµν

)
. (5.16)

The canonical projector π2,0 defined through P is given by

PM
KT

KLPN
L =

(
0 0

0 tµν

)
. (5.17)

Here, tµν is the element of A2,0(M). This implies π2,0(TMN) = tµν . The other projectors
π1,1, π0,2 are defined similarly.

Now we define the Lie bracket on L. For A,B ∈ Γ(L), this is given by

[A,B]L = [A,B]µL∂µ = (Aν∂νB
µ − Bν∂νA

µ)∂µ. (5.18)
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Since this is the ordinary Lie bracket in differential geometry, it satisfies the Jacobi identity
trivially. It is obvious that it also satisfies the Leibniz rule. With this bracket and the trivial
bundle map ρL = idL as the anchor, then L is endowed with a Lie algebroid structure. Note
that since L is involutive with respect to [·, ·]L, it is integrable and define a Dirac structure
on TM. As discussed in Section 3.3, by introducing multi-vectors, we generalize the Lie
bracket to the Schouten-Nijenhuis bracket. An explicit realization of the Schouten-Nijenhuis
bracket in DFT is as follows. Given a k-vector A ∈ Γ(∧kL),

A =
1

k!
Aµ1···µk∂µ1 ∧ · · · ∧ ∂µk , (5.19)

we introduce the “odd coordinate” ζµ := ∂µ. Then the k-vector is expressed as

A =
1

k!
Aµ1···µkζµ1 · · · ζµk . (5.20)

Note that ζµ can be treated as a Grassmann number whose differential ∂/∂ζµ is defined by
the right derivative. Namely,

∂

∂ζµn
(ζµ1 · · · ζµn · · · ζµk) = (ζµ1 · · · ζµn · · · ζµk)

←−
∂

∂ζµn
= (−1)k−nζµ1 · · · ζ̌µn · · · ζµk . (5.21)

Here the symbol ζ̌µn stands for that ζµn is removed. By using this ζµ derivative, the Schouten-
Nijenhuis bracket is explicitly given by

[A,B]S =

(
∂

∂ζµ
A

)
∂µB − (−1)(p−1)(q−1)

(
∂

∂ζµ
B

)
∂µA. (5.22)

Here A ∈ Γ(∧pL), B ∈ Γ(∧qL). The discussion is totally parallel in L̃. The same definition
holds for [·, ·]∗S on L̃ where ζµ = ∂µ is replaced by ζ∗µ = ∂̃µ. One can show that this
expression satisfies the definition of the Schouten-Nijenhuis bracket discussed in Section
3.3. It is known that multi-vectors on a manifold define a Gerstenhaber algebra by the
Schouten-Nijenhuis bracket [128]. By the Vaintrob theorem [129], a Lie algebroid structure
over a vector bundle V → M and a Gerstenhaber algebra over multi-vectors Γ(∧•V ) are
equivalent.

The symmetric pairing 〈〈α,A〉〉 is defined, for example,

α(A1, · · · , As) = αµ1···µsA
µ1
1 · · ·Aµs

s , (5.23)

and so on. Since L̃ and L∗ are identified via the natural isomorphism, the symmetric pairing
〈〈·, ·〉〉 is the inner product 〈·, ·〉 in disguise. A Lie algebroid coboundary operator that maps
a k-vector to a (k + 1)-vector is given by the para-Dolbeault operator d̃ : ∧kL → ∧k+1L.
This is characterized by the following general relation:

d̃X(α1, . . . , αk+1) =
k+1∑
i=1

(−1)i+1ρL̃(αi) · (X(α1, . . . , α̌i, . . . , αk+1))

+
∑
i<j

(−1)i+jX([αi, αj]
∗
S, α1, . . . , α̌i, . . . , α̌j, . . . , αk+1). (5.24)
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Here X ∈ Γ(∧kL), αi ∈ Γ(L̃) and the symbol α̌i stands for that the i-th α is removed. The
bracket [·, ·]∗S and the anchor ρL̃ is defined on L̃. In particular, using the local coordinate,
we find that the action of d̃ on a k-vector X is explicitly given by

d̃X =
1

k!
∂̃µXν1···νk(x, x̃)∂µ ∧ ∂ν1 ∧ · · · ∧ ∂νk . (5.25)

We confirm that this definition of d̃ is compatible with the bracket [·, ·]∗S. By the definition
of d̃ (5.24), for k = 1, A ∈ Γ(L), α1, α2 ∈ Γ(L̃) we have

d̃A(α1, α2) = (−1)2ρL̃(α1) · (A(α2)) + (−1)3ρL̃(α2) · (A(α1)) + (−1)3A([α1, α2]
∗
S)

= ρL̃(α1) · (A(α2))− ρL̃(α2) · (A(α1))− A([α1, α2]
∗
S). (5.26)

Then in the DFT realization, since ρL̃(α1) = α1µ∂̃
µ, we have

A([α1, α2]
∗
S) = ρL̃(α1) · (A(α2))− ρL̃(α2) · (A(α1))− d̃A(α1, α2)

= α1µ∂̃
µ(Aνα2ν)− α2ν ∂̃

ν(Aµα1µ)− (∂̃µAν − ∂̃νAµ)α1µα2ν

= Aµ(α1ν ∂̃
να2µ − α2ν ∂̃

να1µ). (5.27)

Therefore we find that the exterior derivative d̃ on L and the bracket [·, ·]∗S is compatible.
The same discussion holds also for the operator d on the Lie algebroid L̃.

We next derive the Lie derivative in DFT. For A,B ∈ A1,0(M) and α, β ∈ A0,1(M), the
interior products (or the symmetric pairing) are realized as follows:

ιAβ = Aµβµ, ιAdβ = (Aν∂νβµ − Aν∂µβν)∂̃
µ,

ι̃αB = αµB
µ, ι̃αd̃B = (αν ∂̃

νBµ − αν ∂̃
µBν)∂µ. (5.28)

The Lie derivative defined in (5.6) is therefore given by

LAβ = (dιA + ιAd)β

= d(ιAβ) + ιA(dβ) = d(Aνβν) + ιA(∂µβν ∂̃
µ ∧ ∂̃ν)

= [(∂µA
ν)βν + Aν∂µβν ]∂̃

µ + Aµ∂µβν ∂̃
ν − Aν∂µβν ∂̃

µ

= (Aν∂νβµ + βν∂µA
ν)∂̃µ. (5.29)

Similarly we have

L̃αB = (d̃ι̃α + ι̃αd̃)B = d̃(ανB
ν) + ι̃α(∂̃

µBν∂µ ∧ ∂ν)

= [(∂̃µαν)B
ν + αν ∂̃

µBν ]∂µ + αµ∂̃
µBν∂ν − αν ∂̃

µBν∂µ

= (αν ∂̃
νBµ +Bν ∂̃µαν)∂µ. (5.30)

We have consistently defined the Lie algebroid (∧•L, [·, ·]S, d) and its dual Lie algebroid
(∧•L̃, [·, ·]∗S, d̃) in DFT.

We are now in a position to discuss doubled structures of (L, L̃). As we have discussed
in Section 3.4, a Lie bialgebroid is defined by a Lie algebroid (L, [·, ·]L, ρL, d) and its dual
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Lie coalgebroid (L∗, [·, ·]L∗ , ρL∗ , d∗) together with a compatibility condition between them
called the derivation condition (3.18). Again, this is given by

d∗[X,Y ]S = [d∗X,Y ]S + [X, d∗Y ]S, X, Y ∈ Γ(∧•L), (5.31)

where d : ∧kL∗ → ∧k+1L∗ and d∗ : ∧kL → ∧k+1L are exterior derivatives defined above.
Now we examine the derivation condition in DFT by the explicit calculations. It is enough
to show for A,B ∈ Γ(L). The left hand side of (5.31) is given by

d̃[A,B]S = ∂̃µ[A,B]νS∂µ ∧ ∂ν

= ∂̃µ(Aρ∂ρB
ν − Bρ∂ρA

ν)∂µ ∧ ∂ν

= (∂̃µAρ∂ρB
ν + Aρ∂ρ∂̃

µBν − ∂̃µBρ∂ρA
ν − Bρ∂ρ∂̃

µAν)∂µ ∧ ∂ν , (5.32)

while the right hand side is calculated by using the explicit form of the Schouten-Nijenhuis
bracket:

[d̃A,B]S =

(
∂

∂ζρ
d̃A

)
∂ρB − (−1)0

(
∂

∂ζρ
B

)
∂ρd̃A

= (∂̃µAρζµ − ∂̃ρAµζµ)∂ρB
νζν − Bρ∂ρ∂̃

µAνζµζν

= (∂̃µAρ∂ρB
ν − ∂̃ρAµ∂ρB

ν − Bρ∂ρ∂̃
µAν)∂µ ∧ ∂ν ,

[A, d̃B]S = −[d̃B,A]S

= −(∂̃µBρ∂ρA
ν − ∂̃ρBµ∂ρA

ν − Aρ∂ρ∂̃
µBν)∂µ ∧ ∂ν . (5.33)

From these expressions, we obtain

d̃[A,B]S = [d̃A,B]S + [A, d̃B]S + (∂̃ρAµ∂ρB
ν + ∂̃ρBν∂ρA

µ)∂µ ∧ ∂ν . (5.34)

The last contribution represents the violation of the derivation condition (5.31). We have
then explicitly shown that given the Lie algebroid structures L and L̃ ' L∗ in DFT, they do
not form a Lie bialgebroid in general. Although this is true, following the general discussion
in Section 3.5, the double L⊕ L∗ defines a Vaisman algebroid. The anchor in the Vaisman
algebroid is defined as ρV = ρL + ρL∗ while the bilinear form (Ξ1,Ξ2) for Ξi ∈ Γ(TM) is
given by

(Ξ1,Ξ2) = (A+ α,B + β) =
1

2

{
〈〈α,B〉〉+ 〈〈β,A〉〉

}
. (5.35)

Here 〈〈·, ·〉〉 is the symmetric pairing defined before. The differential operator is defined as
D = d + d̃. By using the Lie brackets [·, ·]L, [·, ·]L∗ , Lie derivatives LA, L̃α and operators
d, ι, d̃, ι̃, we define the Vaisman bracket for vectors Ξi ∈ Γ(TM):

[Ξ1,Ξ2]V = [A+ α,B + β]V = [A,B]L + LAβ − LBα−
1

2
d(ιAβ − ιBα)

+ [α, β]L̃ + L̃αB − L̃βA−
1

2
d̃(ι̃αB − ι̃βA), (5.36)
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This is nothing but the C-bracket (2.23). The quadruple (L⊕ L̃, [·, ·]C, ρV, (·, ·)) then defines
a Vaisman algebroid.

We note that the last term in (5.34) is rewritten as

∂̃ρAµ∂ρB
ν + ∂̃ρBν∂ρA

µ = ηKL∂KA
µ∂LB

ν . (5.37)

It is obvious that this vanishes when the strong constraint is imposed. This means that the
derivation condition between L and L̃ is satisfied and (L, L̃) becomes a Lie bialgebroid when
the strong constraint is imposed and the gauge transformation parameters are restricted [93].
In this case, the double L⊕ L̃ defines a Courant algebroid following the general discussions
[102, 130]. This completely agrees with the analysis in [116] where the pre-DFT algebroid
(Vaisman algebroid) becomes a Courant algebroid after imposing the strong constraint. We
again stress that an algebraic origin of the strong constraint is the derivation condition that
is a compatibility condition between L and L̃ which allows them to be a Lie bialgebroid.

5.3 Relations with generalized geometry

In this subsection, we discuss the gauge symmetries associated with L, L̃ and the relation
to generalized geometry. As discussed in [73, 131], the structure of the C-bracket in DFT
naturally arises as a Vaisman bracket on a para-Hermitian geometry. The C-bracket is
recognized as a T-duality covariantized Lie bracket-like structure that accommodates the
diffeomorphism and the B-field gauge symmetry algebra in the NSNS sector of supergravity.
The geometric realization of the C-bracket does not necessarily require the strong constraint.
In this sense, the C-bracket governs the “off-shell” gauge symmetry of DFT (a symmetry
without the strong constraint). Due to the para-complex structure underlying the doubled
space-time M, there is a natural decomposition of the tangent bundle TM = L ⊕ L̃ in
which Lie algebroid structures are found. Since the distributions L, L̃ are Dirac structures
and therefore are integrable, they are given by tangent bundles of foliations F , F̃ in M.
A physical space-time is therefore identified as a leaf defined by x̃µ = const. in a para-
Hermitian manifold. With the natural isomorphism induced by an inner product defined by
the metric η, the vector components in L̃ = TF ' L∗ = T ∗F is identified with 1-forms over
a leaf in M. Therefore, one can understand that the Lie bracket [·, ·]L over L governs the
diffeomorphism parametrized by vector gauge parameters ξµi while the bracket [·, ·]L̃ over L̃
represents the B-field gauge symmetry parametrized by 1-forms ξ̃i,µ. Since the Lie bracket
for the 1-forms [ξ̃1, ξ̃2]L̃ is generically non-zero, the T-duality covariantized B-field gauge
symmetry is effectively enhanced to non-Abelian “off-shell”.

Upon the imposition of the strong constraint, the gauge algebra is closed by the C-
bracket. Therefore in order that the algebra given by the C-bracket generates a symmetry,
the strong constraint is necessarily satisfied, ether implicit or explicitly. A way to solve
the strong constraint trivially is to make the winding derivative be vanishing ∂̃∗ = 0. In
this case, the bracket including 1-forms vanish [ξ̃1, ξ̃2]L̃ = 0 and the C-bracket is reduced
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C-bracket

strong constraint ∂̃ = 0

c-bracket

Vaisman bracket

derivation condition (14)

Courant bracket in (21)

[·, ·]∗ = 0

c-bracket

Figure 5.1: Paths to the c-bracket in DFT and Vaisman algebroids.

to the c-bracket defined in (3.26). This means that by imposing the section condition on
any DFT fields and gauge parameters and making the theory be “on-shell” (i.e. defined
on a physical subspace), the non-Abelian “off-shell” B-field gauge symmetry becomes an
Abelian symmetry “on-shell”. In this sense, the c-bracket is an “on-shell” counterpart of the
C-bracket. From a mathematical point of view, the c-bracket is obtained by first imposing
the derivation condition (3.18) on the Vaisman bracket and then make the Lie bracket on L̃

be a zero-bracket [·, ·]L̃ = 0 (see Fig 5.1). As we have explicitly shown, with the adaptation
of the derivation condition, (L, L̃) forms a Lie bialgebroid. Through the prescription by Liu-
Weinstein-Xu [102], the c-bracket defines a Courant algebroid. This c-bracket is nothing
but the original Courant bracket appeared in generalized geometry [37].

Given a para-Dolbeault cohomology, the “on-shell” fields and gauge parameters in DFT
satisfying the strong constraint are characterized by para-holomorphic quantities defined by
the para-Dolbeault operators:

para-holomorphic : d̃Φ = 0, (5.38)

where Φ is any doubled fields and gauge parameters. This is equivalent to say that the
para-holomorphic quantities are restricted in leaves in the foliation F . We note that this is
not the unique solution to the strong constraint. The other possibility

anti-para-holomorphic : dΦ = 0, (5.39)

also satisfies the strong constraint trivially. The anti-para-holomorphic quantities are defined
along the transverse directions to leaves. Namely, they live in the winding space defined by
xµ = const. We note that this kind of winding dependent space-time actually appears in
solutions to DFT [132–136].

5.4 Ante-Courant algebroid on para-Hermitian manifold

Recalling the discussion in Chapter 3, it is clear that the algebroids by C-bracket are not
only Vaisman and Courant algebroid, but also pre- Courant and Ante-Courant algebroids.
In this section, we realise these algebroids on para-Hermitian geometry. What conditions
are required to construct these algebroids?
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By the general discussion in Chapter 3, the doubled structure of an ante-Courant alge-
broid is compatible with the C-bracket when the anchor satisfies the equation (3.72). We
examine this condition in the para-Hermitian manifold M. Since E and E∗ in the general
discussion correspond to L and L̃ in the para-Hermitian manifold, we first write down the
anchor structures in each Lie algebroid. The anchor ρL : L → TM on the Lie algebroid L

is expressed as

ρL(X) = (ρL)
M
νX

ν∂M

= ρµνX
ν∂µ + ρµνX

ν ∂̃µ, (5.40)

where X ∈ Γ(L). Note that the target of ρL is TM. The adjoint ρ∗L is defined through the
following relation

〈q, ρL(X)〉

= (ρt) ν
µ ηνX

µ + (ρt)νµY
µXν

= 〈ρ∗L(q), X〉, (5.41)

where q = η + Y ∈ Γ(T ∗M) and the symbol t means transposition of a matrix. From this
expression, we write (ρ∗L)

N
µ = ((ρt) ν

µ , (ρt)µν). Likewise, the anchor ρL̃ : L̃→ TM on L̃ and
its adjoint are expressed as (ρL̃)

Mν = (ρ̃µν , ρ̃ ν
µ ), (ρ∗

L̃
)µN = ((ρ̃t)µν , (ρ̃t)µν) . Therefore, the

anchor ρV = ρL + ρL̃ on TM = L⊕ L̃ is given by

(ρV)
M
N =

(
ρµν ρ̃µν

ρµν ρ̃ ν
µ

)
. (5.42)

The component expression of ρLρ∗L̃ + ρL̃ρ
∗
L is

(
ρLρ

∗
L̃
+ ρL̃ρ

∗
L

)MN
=

(
ρµσ(ρ̃

t)σν + (ρ̃)µσ(ρt) ν
σ ρµσ(ρ̃

t)σν + (ρ̃)µσ(ρt)σν

ρµσ(ρ̃
t)σν + (ρ̃) σ

µ (ρt) ν
σ ρµσ(ρ̃

t)σν + (ρ̃) σ
µ (ρt)σν

)
(5.43)

Since d0 is the exterior derivative on TM, this is given by d0f = ∂MfdxM = ∂µfdx
µ +

∂̃µfdx̃µ ∈ Γ(T ∗M) for f ∈ C∞(M) and the condition (5.43) is expressed by(
ρLρ

∗
L̃
+ ρL̃ρ

∗
L

)
(d0f) · g =

(
ρLρ

∗
L̃
+ ρL̃ρ

∗
L

)MN
∂Mf∂Ng = 0. (5.44)

Now, we consider a concrete example of ρV in (5.42) in the flat para-Hermitian manifold.
The most natural candidate of the anchor is given by the diagonal form

(ρV)
M
N =

(
ρµν 0

0 ρ̃ ν
µ

)
. (5.45)

In particular, the simplest example is (ρL)
M
ν = (δµν , 0), (ρL̃)µ

N = (0, δ ν
µ ). In this case, the

condition (5.44) is given by

0 = (ρ∗ρ
∗ + ρρ∗∗)

MN∂Nf∂Mg =
(
∂νf, ∂̃

νf
)( 0 ρµ σ(ρ̃)

σ
ν

ρ̃ σ
µ (ρt) ν

σ 0

)(
∂νg

∂̃νg

)
= ηMN∂Mf∂Ng. (5.46)
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Here ηMN is the O(D,D) invariant metric in DFT. That is, the condition for an ante-Courant
algebroid on a flat para-Hermitian manifoldM is nothing but the strong constraint only for
functions f, g. Since the strong constraint is given by ηMN∂MΨ∂NΦ = 0 for any quantities
Ψ,Φ in the para-Hermitian manifold M, the condition (5.46) is a relaxed version of the
constraint. This is consistent with the result in [116].

5.5 Pre-Courant algebroid on para-Hermitian manifold

Next, we examine the conditions for a pre-Courant algebroid on M. As we have clarified
in Section 3, the condition is only (3.68). We write down this condition in the flat para-
Hermitian manifold. In particular, when ρV is given by (5.45) and ρµν = δµν , ρ̃µν = δµ

ν ,
we have X = Xµ∂µ ∈ Γ(L), d∗f = ∂̃µf∂µ, df = ∂µf∂̃

µ [85]. Therefore, the first condition in
(3.68) is found to be

0 = LdfX + [d∗f,X]

= ∂νf∂̃
νXµ∂µ + ∂̃νf∂νX

µ∂µ

= ηMN∂Mf∂NX
µ∂µ. (5.47)

The same is true for ξ ∈ Γ(L̃). The second condition in (3.68) is

ηMN∂Mf∂Nξµ∂̃
µ = 0. (5.48)

Since any pre-Courant algebroids are ante-Courant algebroids, the condition (5.46) is also
satisfied. These conditions (5.47) and (5.48) are nothing but the strong constraint for
f ∈ C∞(M), X ∈ Γ(L) and ξ ∈ Γ(L̃). This is again a relaxed version of the strong
constraint in DFT.

As noted in Chapter 3, (5.48) is the necessary condition for a Poisson structure. In this
case, we have the following bracket,

{g, f} = ∂̃µg∂µf = −∂̃µf∂µg = −{f, g}. (5.49)

We find that the skew-symmetric nature is guaranteed by the condition (5.46). The Jaco-
biator of the bracket is calculated as

Jac(f, g, h) = ∂̃µ(∂̃νf)∂νg∂µh+ ∂̃νf∂̃µ(∂νg)∂µh+ ∂̃µ(∂̃νg)∂νh∂µf

+ ∂̃νg∂̃µ(∂νh)∂µf + ∂̃µ(∂̃νh)∂νf∂µg + ∂̃νh∂̃µ(∂νf)∂µg. (5.50)

Due to the conditions (5.47) and (5.48), we find Jac(f, g, h) = 0 and confirm that (5.49)
indeed defines a Poisson structure.

5.6 Twisted algebroids

We have been focusing on the doubled structures of the algebroids and we clarified the
conditions for vectors, forms and functions in the doubled space-time. One can introduce



5.6. TWISTED ALGEBROIDS | 73

additional structures known as the twist by background fluxes in the manifold. For example,
the twist of the standard Courant algebroid defined by the generalized tangent bundle
TM ⊕ T ∗M over M has been discussed [109]. The background 3-form H modifies the
standard Courant bracket [·, ·]c giving a new bracket [·, ·]H :

[X1 + ξ1, X2 + ξ2]c = [X1, X2] + LX1ξ2 − LX2ξ1 +
1

2
d(〈ξ1X2〉 − 〈ξ2X1〉),

[X1 + ξ1, X2 + ξ2]H = [X1 + ξ1, X2 + ξ2]c + ιX2ιX1H, (5.51)

where, Xi ∈ Γ(TM), ξi ∈ Γ(T ∗M). The twisted bracket [·, ·]H preserves the Courant alge-
broid structure when dH = 0 [42]. Physically, this 3-form H corresponds to the H-flux that
appears in the NS-NS sector of type II supergravity. It is known that this H-flux is related
to the other fluxes f,Q,R in type II string theory via the T-duality transformations. This
is represented by the following form [137]:

Habc
Tc←→ f c

ab

Tb←→ Q bc
a

Ta←→ Rabc. (5.52)

The twist of the Courant algebroid with the C-bracket has been discussed in [116, 138]. In
this section, we study compatibility conditions for the doubled and the twisted structures
of the other DFT algebroids.

In order to introduce the twist structure, we consider a doubled (2, 1)-tensor F =

FMN
LdxM ⊗ dxN ⊗ ∂L on a flat para-Hermitian manifold M. We prefer to use a (2, 1)-

tensor rather than a 3-form on M because we never introduce “the generalized doubled
tangent bundle” overM. We then define the twisted C-bracket [·, ·]F as follows:

[e1, e2]F = [e1, e2]C + ιe2ιe1F, ei ∈ Γ(V). (5.53)

Here ιei : Γ(∧pV∗)→ Γ(∧p−1V∗) is the interior product defined by

(ιeiq)(a1, . . . , ap−1) = h(ei, a1, . . . , ap−1), q ∈ Γ(∧pV∗), a1, · · · , ap−1 ∈ Γ(V). (5.54)

In the following, we assume that (V , [·, ·]C, ρV, (·, ·)+) is a Vaisman algebroid with the doubled
structure discussed in the previous sections.

Twisted Vaisman algebroid

We consider (V , [·, ·]F, ρV, (·, ·)+). and examine Axiom V1 (C3) and Axiom V2 (C5). Axiom
V1, the equation (V1), gives the Leibniz rule for the bracket. Expanding the left-hand side
of the equation (V1), we find

[e1, fe2]F = [e1, fe2]C + ιe2ιe1F

= f [e1, e2]C + fιe2ιe1F + (ρV(e1)f)e2 − (e1, e2)+Df

= f [e1, e2]F + (ρV(e1)f)e2 − (e1, e2)+Df, (5.55)

where we have used the property of the C-bracket. Therefore, (V , [·, ·]F, ρV, (·, ·)+) satisfies
Axiom V1 automatically.
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Axiom V2, the equation (V2), is a compatibility condition between (·, ·)+ and ρV. The
right-hand side of the equation (V2) is evaluated as

([e1, e2]F +D(e1, e2)+, e3)+ + (e2, [e1, e3]F +D(e1, e3)+)+
= ([e1, e2]V +D(e1, e2)+, e3)+ + (e2, [e1, e3]V +D(e1, e3)+)+
+ (ιe2ιe1F, e3)+ + (e2, ιe3ιe1F )+. (5.56)

The first and the second terms on the right-hand side become ρV(e1)(e2, e3)+. Thus, Axiom
V2 is satisfied when the third and the fourth terms vanish:

(ιe2ιe1F, e3)+ + (e2, ιe3ιe1F )+ = 0 ∀e1, e2, e3 ∈ Γ(V). (5.57)

Since the basis of Γ(V) is ∂M = (∂µ, ∂̃
µ), ιe2ιe1F is given by

ιe2ιe1F = (e1)
M(e2)

NF l
MN ∂l + (e1)

M(e2)
NFMNl∂̃

l. (5.58)

Then, we can denote (·, ·)+ as

(e1, e2)+ =
1

2

(
〈ξ1, X2〉+ 〈ξ2, X1〉

)
=

1

2
ηMN(e1)

M(e2)
N . (5.59)

Here, Xi ∈ Γ(L), ξi ∈ Γ(L̃∗) and ei = Xi + ξi. Therefore, the condition (5.57) becomes

0 = (ιe2ιe1F, e3)+ + (e2, ιe3ιe1F )+

=
1

2
(ηKLF

K
MN + ηNKF

K
ML )(e1)

M(e2)
N(e3)

L. (5.60)

Namely,

FMNL + FMLN = 0. (5.61)

Here the doubled indices are raised and lowered by the O(D,D) invariant metric ηMN and its
inverse ηMN . In summary, (V , [·, ·]F, ρV, (·, ·)+) becomes a twisted Vaisman algebroid only
when the condition (5.61) is satisfied. This means that the tensor FMNL is anti-symmetric
with respect to the latter two indices. We note that the doubled tensor FMN

K is decomposed
as FMN

K = (Hµνρ, fµν
ρ, Qµ

νρ, Rµνρ) involving all the fluxes in (5.52).

Twisted ante-Courant algebroid

Next we discuss a twisted ante-Courant algebroid with the doubled structure. We as-
sume that (V , [·, ·]C, ρV, (·, ·)+) is an ante-Courant algebroid and look for conditions that
(V , [·, ·]F, ρV, (·, ·)+) becomes also an ante-Courant algebroid. Since any ante-Courant al-
gebroids are Vaisman algebroids, the tensor F should satisfy the condition (5.61). As we
have discussed, the condition for the ante-Courant algebroid is (3.72). However, this is the
condition for the anchor map which is irrelevant to the bracket structure. Therefore, we
need no extra conditions for F .
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Twisted pre-Courant algebroid

Next, we discuss a twisted pre-Courant algebroid. Again we assume that (V , [·, ·]C, ρV, (·, ·)+)
is a pre-Courant algebroid. We write down the conditions that (V , [·, ·]F, ρV, (·, ·)+) becomes
a pre-Courant algebroid. In addition to the condition (5.61), we need Axiom C2, namely,
the homomorphism of ρV (3.20). The left-hand side of the equation in (3.20) is evaluated
as

ρV([e1, e2]F) = ρV([e1, e2]V + ιe2ιe1F )

= [ρV(e1), ρV(e2)] + ρV
(
ιe2ιe1F

)
. (5.62)

Thus, the condition is

ρV
(
ιe2ιe1F

)
= (e1)

M(e2)
N(ρV)

L
KF

K
MN ∂L = 0. (5.63)

In component, we have,

(ρV)
L
KF

K
MN = 0. (5.64)

Then for the non-zero tensor F , the anchor should satisfy

det ρV = 0. (5.65)

Therefore, we should add the condition not only for the tensor (5.61) but also for the anchor
(5.65) to obtain a twisted pre-Courant algebroid (V , [·, ·]F, ρV, (·, ·)+). In particular, when
(5.45) is adapted for ρV, either ρL or ρL̃ must be zero.

Twisted Courant algebroid

Finally, we consider a twisted Courant algebroid. We assume that (V , [·, ·]C, ρV, (·, ·)+) is a
Courant algebroid. We calculate the Jacobiator (3.19) for [e1, e2]F and confirm Axiom C1.
The result is

[[e1, e2]F, e3]F + c.p. = DTF(e1, e2, e3)

− 1

3
D
(
(ιe2ιe1F, e3)+ + c.p.

)
+
(
ιe3ι([e1,e2]V)F + [ιe2ιe1F, e3]V + ιe3ι(ιe2 ιe1F )F + c.p.

)
. (5.66)

Here TF is defined by

TF(e1, e2, e3) = T (e1, e2, e3) +
1

3

(
(ιe2ιe1F, e3)+ + c.p.

)
. (5.67)

Then the condition for Axiom C1 is

− 1

3
D
(
(ιe2ιe1F, e3)+ + c.p.

)
+
(
ιe3ι([e1,e2]V)F + [ιe2ιe1F, e3]V + ιe3ι(ιe2 ιe1F )F + c.p.

)
= 0. (5.68)
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Since (V , [·, ·]F, ρV, (·, ·)+) should be a pre-Courant algebroid, the anchor satisfies the condi-
tion det ρV = 0. To solve this condition, we assume that the anchor is given by the diagonal
form (5.45). Then one of the anchors ρ or ρ̃ must be zero. In the following, we select a
frame where ρ̃ = 0 and ρ is an identity matrix. When ρL̃ = 0, this implies d∗f = 0 and
Lξi = 0 [108]. Since we assumed that (V , [·, ·]C, ρV, (·, ·)+) becomes a Courant algebroid, the
derivation condition (3.18) must hold. This is represented by the local coordinate as [85]

0 = ∂̃ρAµ∂ρB
ν + ∂̃ρBν∂ρA

µ = ηKL∂KA
µ∂LB

ν , A,B ∈ Γ(L). (5.69)

Furthermore, the “relaxed” version of the strong constraints (5.46), (5.47) and (5.48) are
satisfied as discussed before. The most natural solution to these conditions is obtained by
setting ∂̃µΨ = 0 for any quantities Ψ inM. Then the Lie bracket [·, ·]∗ becomes zero.

With these conditions at hand, we evaluate (5.68). The first term in the left-hand side
of (5.68) is expressed as

D(ιe2ιe1F, e3)+ =
1

2
D(ιq3ιe2ιe1F ). (5.70)

Here we have introduced the interior product ιqi : Γ(∧pV)→ Γ(∧p−1V) by a doubled 1-form
qi which acts on a doubled k-vector. Therefore,

−1

3
D((ιe2ιe1F, e3)+ + c.p.) = −1

3
d(ιq3ιe2ιe1F + c.p.), (5.71)

where we have used the fact D = d+ d∗. Likewise, the second term in the left-hand side in
(5.68) becomes

ιe3ι[e1,e2]CF + c.p. = ιe3ι([X1,X2]L+LX1
ξ2−LX2

ξ1+d(e1,e2)−)F + c.p. (5.72)

The third term in the left-hand side of (5.68) is

[ιe2ιe1F, e3]V + c.p. = [ιe2ιe1F
µ∂µ, X3] + L(ιe2 ιe1F

µ∂µ)ξ3

− LX3(ιe2ιe1Fµ∂̃
µ) + d(ιe2ιe1F, e3)− + c.p. (5.73)

Here we have used the following notations,

ιe2ιe1F
l∂l = (e1)

M(e2)
NF l

MN ∂l,

ιe2ιe1Fl∂̃
l = (e1)

M(e2)
NFMNl∂̃

l. (5.74)

Then the condition (5.68) is found to be

− 1

3
d(ιq3ιe2ιe1F ) + ιe3ι([X1,X2]L+LX1

ξ2−LX2
ξ1+d(e1,e2)−)F + [ιe2ιe1F

µ∂µ, X3]

+ L(ιe2 ιe1F
µ∂µ)ξ3 − LX3(ιe2ιe1Fµ∂̃

µ) + d(ιe2ιe1F, e3)− + ιe3ι(ιe2 ιe1F )F + c.p.

= 0. (5.75)

If F is a totally anti-symmetric tensor Hµνρ∂̃
µ ∧ ∂̃ν ∧ ∂̃ρ, one can show that the left-

hand side of (5.75) becomes ιX3ιX2ιX1dH. Therefore when dH = 0, Axiom C1 holds and
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(V , [·, ·]F, ρV, (·, ·)+) becomes the H-twisted standard Courant algebroid known in the lit-
erature. When we consider the condition ∂̃µΦ = 0, then as described in Section 4.1, this
means that we restrict the doubled space to a leaf in the foliation F of M. This leaf is
interpreted as the physical space-time and dH = 0 is nothing but the Bianchi identity for
the field strength of the NS-NS B-field in type II supergravity.

On the other hand, when we consider an alternative frame ρL = 0, ∂µΨ = 0, we have
df = 0, LXi

= 0 and [·, ·]L = 0. In this case, F = Rµνρ∂µ ∧ ∂ν ∧ ∂ρ is allowed and
d∗R = 0 appears as a condition. The other possibilities including F = f ρ

µν ∂̃
µ ∧ ∂̃ν ∧ ∂ρ and

F = Q νρ
µ ∂̃µ ∧ ∂ν ∧ ∂ρ, would be allowed for general ρV (5.42). In particular, the role of the

non-diagonal component ρ̃µν in (5.42) and the tensors fµν
ρ, Qµ

νρ is discussed in [116].

In this Chapter, we consider the doubled structure of Vaisman algebroid on para-
Hermitian manifold. We show that the failure of the derivation condition is resolved by
imposing the strong constraint. With these results at hand, we found an algebraic origin
ofthe strong constraint. Namely, it is an efficient condition for the derivation condition that
ensures that (L, L̃) becomes a Lie bialgebroid.

In the latter part of this Chapter, we found that the consistency conditions of the dou-
bled structures for ante- and pre- Courant algebroids are just the relaxed versions of the
strong constraint in DFT. We also studied the consistency conditions for the twisted DFT
algebroids. The twist is introduced by a (2, 1)-tensor in the para-Hermitian manifold. We
clarify that the tensor should satisfy appropriate conditions related by the anchors in the
Lie algebroid pairs of the doubled structure. We showed that the (relaxed versions of) the
strong constraint implies the induced Poisson structure in general. This means that the
Poisson structure is closely related to the doubled nature of algebroids. Even though, this
becomes trivial in the flat para-Hermitian manifold, it still provides non-trivial structures
in the general curved para-Hermitian manifold.
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6 | Conclusions and Outlook

In this thesis, we focused on various algebroids and explore the theoretical structure of DFT
through their doubled structures. Double Field Theory was a field theory with T-duality as
symmetry. DFT was built from the discussion of closed String Field Theory (SFT) [64,65].
The most basic setup, type II DFT, was defined on a doubled spacetime in 2D dimensions.
The actions of the DFT were not only invariant to the T-duality group O(D,D), but also to
the generalized diffeomorphism (generalized Lie derivative). The generalized Lie derivative
was an extension of the Lie derivative in Riemannian geometry, which is defined on doubled
spacetime. DFT had the gauge symmetry which is governed by the C-bracket. This bracket
does not satisfy the Jacobi identity. DFT also had the strong constraint for consistency.
This constraint had no physical origin, it is only the closure constraint of the gauge algebra
by the C-bracket.

Mathematically, the C-bracket defines Vaisman’s metric algebroid (Vaisman algebroid)
[72]. We focused on the algebroid and consider the mathematical origin of the strong
constraint. The key was the Drinfel’d double. The Drinfel’d double of Lie algebra was well
known [40]. We generalized the operation for Lie algebroids [102] and show the doubled
structure of the Vaisman algebroid．In addition, we also considered the doubled structure
of other algebroids described by the C-bracket.

DFT geometry was discussed in relation to the para-Hermitian geometry. We realizeed
the Vaisman algebroid with the doubled structure on this geometry. We calculated the
compatibility condition called the derivation condition in Chapter 3 and showed the math-
ematical origin of the strong constraint. We also realized the doubled structure of other
algebroids described by the C-bracket, and discovered that the relaxed version of the strong
constraint becomes apparent as the compatibility condition.

Summary of each chapter

Chapter 1

Chapter 1 briefly introduced the central concepts of this thesis through an introduction to
string theory. There were five equivalent theories in string theory, which are related by
string duality. Among them, T-duality was a duality unique to string theory that arises
when a string winds around a compactified space. Duality was not usually treated in an
explicit theory, since it is essentially a relation between different theories. We introduced
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generalized geometry and the doubled geometry as a framework to treat T-duality explicitly.
In addition, We discussed Doubled Field Theory which is a field theory with T-duality as
the symmetry.

Chapter 2

In Chapter 2, a very brief review of Doubled Field Theory was presented. DFT was a field
theory defined on the doubled spacetime (x, x̃) with the winding coordinate x̃ added in
addition to the usual momentum coordinate x in order to make T-duality explicit. DFT
was a field theory defined on doubled spacetime (x, x̃). DFT was historically a theory
constructed from SFT, but it can also be interpreted as a recombination of supergravity
into a T-duality covariant. The most basic DFT was based on type II theory. The type
II DFT action was not only invariant under the T-duality group O(D,D), but also under
the generalized Lie derivative. The DFT has gauge symmetry, which was described by the
C-bracket. The C-bracket was characterized by the fact that it does not satisfy the Jacobi
identity. This was because the generalized diffeomorphism in DFT is a combination of the
usual spacetime diffeomorphism and the gauge transformation of the B field. For consistency
of the theory, DFT had the strong constraint. This condition had no physical origin and is
a condition for the closure of the Jacobi identity by the C-bracket. Preparations for finding
the algebraic origin of this condition were made in the next Chapter 3 and Chapter 4.

Chapter 3

In Chapter 3, we summarized algebroids and their doubled structures, which are related to
gauge symmetry in DFT. The basic idea of this chapter was the Drinfel’d double for Lie
algebra. This was the operation of introducing two Lie algebras in a dual vector space and
taking their direct sum. If the compatibility condition held between Lie algebras, the struc-
ture after the direct summation also forms a new Lie algebra. Based on this relationship,
we first introduced Lie algebroid, the simplest algebroid structure. Lie algebroid was an
extension of the Lie algebra structure to vector bundles on a manifold M . By preparing a
dual vector bundle and introducing two Lie algebroids, Drinfel’d double could be performed
on those Lie algebroids under the compatibility condition. This compatibility condition
was called the derivation condition. However, it was not the Lie algebroid but the Courant
algebroid that appears in Drinfel’d double of the Lie bialgebroids. The Courant algebroid
was a structure defined by five axioms including the (deformed) the Jacobi identity. The
Vaisman algebroid was a further generalization of the Courant algebroid, satisfying only two
axioms. Just as the Courant algebroid was obtained by Drinfel’d double of Lie algebroid,
the Vaisman algebroid was obtained by Drinfel’d double of Lie algebroid. The Vaisman
algebroid also proved to have a doubled structure [85].

We also classified all algebroids that could be defined by the C-bracket. Some of the five
axioms defining Courant algebroids were not independent of each other. By paying attention
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to the principal-subordinate relationship of axioms and examining all possible combinations
of axioms, we could find four new algebroid structures in addition to the Courant and the
Vaisman algebroids. Furthermore, we were able to show that two of the new algebroids
have doubled structures. Finally, we discussed the relationship between these algebroids
and algebras.

Chapter 4

In Chapter 4, we summarized the geometries related to T-duality. First, generalized ge-
ometry dealt with generalized tangent bundles. The generalized tangent bundle TM was a
direct sum of the tangent bundle TM and the cotangent bundle T ∗M . Since the symmetry
group of the target space was O(D,D) and the gauge transformation of the B-field can be
taken in geometrically, this geometry is especially compatible with supergravity. The gener-
alized Lie derivative of the generalized vector Γ(TM) was related to the Courant algebroid
mentioned in Chapter 3.

However, the geometry of DFT was not generalized geometry but the doubled geometry.
Since the base space (spacetime) itself was doubled, the fundamental idea was different from
that of generalized geometry. The doubled geometry was related to the para-Hermitian
geometry and the Born geometry. First, the necessary structures for the para-Hermitian
geometry were defined for a 2D manifold which is called the para-complex structure. Next,
we considered the split of tangent bundle TM to L and L̃ and disscused the integrability of
L, L̃. We showed that the doubled spacetime onM could be interpreted as a leaf of foliation.
We also introduced natural isomorphism and discussed the relationship between the para-
Hermitian geometry and generalized geometry. Next, we introduced the Born geometry, a
generalization of the para-Hermitian geometry. Born geometry had three internal structures,
which form a para-quaternionic structure by compatibility.

Chapter 5

Continuing from Chapter 5, we reproduced the concepts appearing in DFT within the
framework of the para-Hermitian geometry. In Chapter 5, we reproduced the doubled
structure of the Vaisman algebroid discussed in Chapter 2 on the para-Hermitian manifold
M. First, we introduced the para-Dolbeault operators. We specified the exterior algebras
for L, L̃ and constructed a para-Dolbeault cohomology.

From component calculations, the differential operator d̃ and the Lie bracket [·, ·]L did
not satisfy the derivation condition for L, L̃．Thus, the pair (L, L̃) was not a Lie bialgebroid
in general from the discussion in Chapter 3. We realized the Vaisman algebroid defined by
the C-bracket on the para-Hermitian manifold. We also showed that the algebraic origin
of the strong constraint condition of DFT was the derivation condition. In addition, we
reproduced the structure of the new algebroids with doubled structure in the same way as
presented in Chapter 2. As a result, we found that the conditions for constructing these
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new algebroids were a relaxation of certain strong constraints.

In this thesis, we paid particular attention to the gauge algebra (algebroid) of DFT. The
results were very interesting because it is clear that there were various mathematical struc-
tures from DFT. These structures had not appeared in conventional physics. There were
still many other topics related to the algebroids and the doubled geometry.

Outlook

Finally, we would like to introduce some topics not covered in this thesis. As already
mentioned, in DFT, the C-bracket is characterized by its gauge symmetry. In other words,
this is an infinitesimal gauge transformation. In contrast, finite gauge transformations have
also been discussed in [127, 139–145]. In particular, from a mathematical point of view,
finite gauge transformation of the DFT is discussed by an “integration” operation on the
Vaisman algebroid. The “integration” means an analogy with the fact that Lie groups can
be constructed from Lie algebras. At least, it has already been shown that the Poisson Lie
group can be obtained by integration of Lie bialgebras, and its generalization to Poisson Lie
groupoids by integration of Lie bialgebroid [108, 146]. A groupoid is an extended structure
of the group such that it has more than one unit element. For details, see [147]. Although
integrals of algebroids are generally difficult, there is a prediction that a groupoid structure
becomes apparent by integration of the Courant algebroids [148,149]. As a further argument,
there is a paper that points out the connection between the integral of the Vaisman algebroid
and Lackoid [150]. The problem of obtaining a group (or groupoid) from an algebra (or
algebroid) by integration is called the coquecigrue problem. The coquecigrue refers to an
imaginary creature that appears in the 16th-century French literature of the Gargantua
stories and in the Pantagruel. If the coquecigrue problem for the Vaisman algebroid is
solved, it is not only a mathematically interesting result, but also it would give a geometrical
origin for the gauge symmetry of the DFT.

Moreover, imposing strong constraints is a sufficient condition for obtaining a closed
gauge algebra of the DFT, not a necessary condition. More generally, a DFT setup that
does not require strong constraints is also considered [83]. The pre-Courant algebroid and
the ante-Courant algebroid may be related to relaxing the strong constraint.

In this thesis, we introduce the para-Hermitian geometry and the Born geometry to
realize the doubled spacetime. Furthermore, other method using graded geometry are also
considered. The relationship of the Courant algebroids and QP manifolds are discussed
in [151]. The relationship between the structure of the C-bracket and the derived bracket
product [152, 153] should also sort out the relationship between graded geometry and the
para-Hermitian geometry.

The relationship with Poisson-Lie T-duality [118, 154, 155], an extension of T-duality,
is also discussed. When the DFT is constructed on group manifolds based on type II
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supergravity theory, Poisson-Lie T-duality is an obvious symmetry of the theory. Since the
Vaisman algebroid with the doubled structure constructs on any base space (not only the
para-Hermitian manifold), we would like to see what kind of results we can obtain when we
reproduce it on a group manifold. it is said that the Courant algebroid by Drinfel’d double
of [102] is the key to understanding Poisson-Lie T-duality in string theory [156–159].

Finally, a naive extension of DFT itself is to upgrade the symmetry from T-duality to
U-duality. Exceptional Field Theory (EFT) was invented to make U-duality an explicit
symmetry [160]. EFT is also defined on extended spacetime. For this reason, the recent
development of EFT and (type II and heterotic) DFT are now collectively called Extended
Field Theory (ExFT). The geometry of ExFT is also called Extended Geometry. The
gauge symmetry of EFT has been discussed in [161] and others, but its geometric picture
is more unclear than that of DFT. In a naive view, since EFT is an extension of DFT, the
geometric picture of EFT should encompass doubling geometry. It is not well known how
to geometrically treat the space in the gauge direction in heterotic DFT. Questions remain
as to how the gauge symmetry of ExFT is related to the doubled structure treated in this
study.
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A | Calculation Notes

A.1 Derive the formula (3.29)

We derive the following equation.

T (e1, e2, e3) ≡
1

3
(([e1, e2]V, e3)+ + c.p.)

=
1

2
〈ξ3, [X1, X2]E〉+ 〈[ξ1, ξ2]E∗ , X3 + ρ(X3)(e1, e2)− − ρ∗(ξ3)(e1, e2)−〉 (3.29)

This is the relation corresponding to Lemma 3.2 of Ref. [102], which can be shown by
calcration about T (e1, e2, e3). Since the form of the bracket product is the same, Using
the Vaisman bracket [·, ·]V , or with the Courant bracket [·, ·]c in [102], the same relational
expression is obtained.

First, focusing on ([e1, e2]V, e3)+, from the definition of [·, ·]V, (·, ·)+,

([e1, e2]V, e3)+ =
1

2
{〈ξ3, [X1, X2]E〉+ 〈ξ3,Lξ1X2〉 − 〈ξ3,Lξ2X1〉 − ρ∗(ξ3)(e1, e2)−

〈[ξ1, ξ2]E∗ , X3〉+ 〈LX1ξ2, X3〉 − 〈LX2ξ1, X3〉+ ρ(X3)(e1, e2)−, (A.1)

Focusing on the terms of the Lie derivative, the following relations can be used from the
distributive property of the Lie derivative

〈ξ3,Lξ1X2〉 = Lξ1〈ξ3, X2〉 − 〈[ξ1, ξ3]E∗ , X2〉

〈LX1ξ2, X3〉 = LX1〈ξ2, X3〉 − 〈ξ2, [X1, X3]E〉

Also, from the definition of d in [108],

LX1〈ξ2, X3〉 = ιX1d〈ξ2, X3〉 = ρ(X1)〈ξ2, X3〉. (A.2)

Similarly,
Lξ1〈ξ3, X2〉 = ρ∗(ξ1)〈ξ3, X2〉. (A.3)

Therefore, ([e1, e2]V, e3)+can be further rewritten from (A.1) as follows.

([e1, e2]V, e3)+ =
1

2
{〈ξ3, [X1, X2]E〉+ 〈[ξ1, ξ2]E∗ , X3〉+ c.p.}

+
1

2
{ρ∗(ξ1)〈ξ3, X2〉 − ρ∗(ξ2)〈ξ3, X1〉 − ρ∗(ξ3)(e1, e2)−

+ ρ(X1)〈ξ2, X3〉 − ρ(X2)〈ξ1, X3〉+ ρ(X3)(e1, e2)−} (A.4)
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Next, we add and subtractρ(X1)(e2, e3)−, ρ(X2)(e3, e1)− and ρ∗(ξ1)(e2, e3), ρ∗(ξ2)(e3, e1)−

respectively, and organise the cyclic terms. From the definition of ρ, ([e1, e2]V, e3)+ becomes
the following form.

([e1, e2]V, e3)+ =
1

2
{〈ξ3, [X1, X2]E〉+ 〈X3, [ξ1, ξ2]E∗〉+ ρ(X3)(e1, e2)− − ρ∗(ξ3)(e1, e2)−c.p.}

+
1

2
ρ(e1)(e2, e3)+ −

1

2
ρ(e2)(e3, e1)+ (A.5)

Now, if we cycle through the legs of ([e1, e2]V, e3)+ and take the sum, we get the right-hand
side of (3.29).

T (e1, e2, e3) ≡
1

3
(([e1, e2]V, e3)+ + c.p.)

=
1

2
{〈[X1, X2]E, ξ3〉+ 〈[ξ1, ξ2]E∗ , X3〉+ ρ(X3)(e1, e2)− − ρ∗(ξ3)(e1, e2)−c.p.}

+
1

2
{ρ(e1)(e2, e3)+ − ρ(e2)(e3, e1)+ + ρ(e2)(e3, e1)+

− ρ(e3)(e1, e2)+ + ρ(e3)(e1, e2)+ − ρ(e1)(e2, e3)+}

=
1

2
{〈ξ3, [X1, X2]E〉+ 〈[ξ1, ξ2]E∗ , X3〉

+ ρ(X3)(e1, e2)− − ρ∗(ξ3)(e1, e2)− + c.p.} (A.6)

Therefore, it can be shown that (3.29).

A.2 Derive the formula (3.30)

We derive the following equation.

([e1, e2]V, e3)− + c.p. = T (e1, e2, e3)

+ [{ρ(X3)(e1, e2)− + 2ρ∗(ξ3)(e1, e2)− − 〈[ξ1, ξ2]E∗ , X3〉}+ c.p.]

(3.30)

This is a relation corresponding to Lemma 3.4 of [102] and can be shown from the definition
of (·, ·)±.

From the definition of (·, ·)±, the following relation is obtained.

([e1, e2]V, e3)− + ([e1, e2]V, e3)+ = 〈[ξ1, ξ2]E∗ , X3〉+ 〈LX1ξ2, X3〉

− 〈LX2ξ1, X3〉+ 〈d(e1, e2)−, X3〉. (A.7)

Furthermore, organising the right-hand side,

([e1, e2]V, e3)− + ([e1, e2]V, e3)+ = 〈[ξ1, ξ2]E∗ , X3〉+ ρ(X1)〈ξ2, X3〉 − 〈ξ2, [X1, X3]E〉

− ρ(X2)〈ξ1, X3〉+ 〈ξ1, [X2, X3]E〉+ ρ(X3)(e1, e2)−.

(A.8)
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We sum the index of (A.8) and use (3.29) to obtain following result,

{([e1, e2]V, e3)− + ([e1, e2]V, e3)+}+ c.p.

= {([e1, e2]V, e3)− + c.p.}+ 3T (e1, e2, e3)

= {〈[ξ1, ξ2]E∗ , X3〉+ ρ(X1)〈ξ2, X3〉 − 〈ξ2, [X1, X3]E〉

− ρ(X2)〈ξ1, X3〉+ 〈ξ1, [X2, X3]E〉+ ρ(X3)(e1, e2)−}+ c.p. (A.9)

Once we calculate all the c.p. (cyclic permutarion) parts as well, it can be summarised as
follows

{([e1, e2]V, e3)− + c.p.}+ 3T (e1, e2, e3)

= {〈[ξ1, ξ2]E∗ , X3〉+ 2〈ξ3, [X1, X2]E〉+ 3ρ(X3)(e1, e2)−}+ c.p.

= 4T (e1, e2, e3) + [{ρ(X3)(e1, e2)− + 2ρ∗(ξ3)(e1, e2)− − 〈[ξ1, ξ2]E∗ , X3〉}+ c.p.] (A.10)

The transformation to the last line is just a forced creation of 4T (e1, e2, e3) to land on (3.30).
If we migrate and organise (A.10), we get (3.30).

A.3 Axiom C1

Calculate the left-hand side of Axiom C1 [[e1, e2]V, e3]V + c.p. From the definition of [·, ·]V,
it follows that

[[e1, e2]V, e3]V + c.p. = I1 + I2, (A.11)

I1 = [[ξ1, ξ2]E∗ , ξ3]E∗ + [LX1ξ2 − LX2ξ1, ξ3]E∗ + [d(e1, e2)−, ξ3]E∗

+ L[X1,X2]E+Lξ1
X2−Lξ2

X1−d∗(e1,e2)−ξ3

− LX3 [ξ1, ξ2]E∗ − LX3LX1ξ2 + LX3LX2ξ1

− LX3d(e1, e2)− + d([e1, e2]V, e3)− + c.p., (A.12)

I2 = [[X1, X2]E, X3]E + [Lξ1X2 − Lξ2X1, X3]E − [d∗(e1, e2)−, X3]E

+ L[ξ1,ξ2]E∗+Lξ1
X2−Lξ2

X1+d(e1,e2)−X3

− Lξ3 [X1, X2]E − Lξ3Lξ1X2 + Lξ3Lξ2X1

+ Lξ3d∗(e1, e2)−− d∗([e1, e2]V, e3)−+ c.p. (A.13)

Let Γ(E∗) component be I1 and Γ(E) component be I2. Since I1 and I2 are calculated
almost identically, only I1 is taken out and calculated. Using

L[X1,X2]E = [LX1 ,LX2 ]E (A.14)

we obtain

L[X1,X2]Eξ3 − LX3LX1ξ2 + LX3LX2ξ1 + c.p. = 0. (A.15)
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So I1 can be written as follows.

I1 = {[[ξ1, ξ2]E∗ , ξ3]E∗ + [LX1ξ2 − LX2ξ1, ξ3]E∗ − [d∗(e1, e2)−, ξ3]E∗

+ L[X1,X2]E+Lξ1
X2−Lξ2

X1−d∗(e1,e2)−ξ3

− LX3 [ξ1, ξ2]E∗ − LX3LX1ξ2 + LX3LX2ξ1 − Ld(e1,e2)− + d([e1, e2]V, e3)−}+ c.p.

= {[LX1ξ2 − LX2ξ1, ξ3]E∗ − [d∗(e1, e2)−, ξ3]E∗

+ LLξ1
X2−Lξ2

X1−d∗(e1,e2)−ξ3

− LX3 [ξ1, ξ2]E∗ − Ld(e1,e2)− + d([e1, e2]V, e3)−}+ c.p. (A.16)

We now turn our attention to the term LX3 [ξ1, ξ2]E∗ + c.p..

LX3 [ξ1, ξ2]E∗ = (dιX3 + ιX3d)[ξ1, ξ2]E∗

= d〈X3, [ξ1, ξ2]E∗〉+ iX3d[ξ1, ξ2]E∗

+ (ιX3Lξ1dξ2 − ιX3Lξ1dξ2) + (ιX3Lξ2dξ1 − ιX3Lξ2dξ1)

= d〈X3, [ξ1, ξ2]E∗〉+ ιX3Lξ1dξ2 − ιX3Lξ2dξ1
+ ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1). (A.17)

Furthermore, when X ∈ Γ(E), ξ, η ∈ Γ(E∗), the following command holds for LX3 [ξ1, ξ2]E∗

in general.

ιXLξdη = [ξ,LXη]E∗ − LLξXη + [d〈η,X〉, ξ]E∗ + d(ρ∗(ξ)〈η,X〉)− d〈[ξ, η]E∗ , X〉 (A.18)

The derivation of (A.18) is given in the next section. Applying this to iX3Lξ1dξ2 and
iX3Lξ2dξ1, LX3 [ξ1, ξ2]E∗ + c.p. takes the following form.

LX3 [ξ1, ξ2]E∗ + c.p = {[LX1ξ2 − LX2ξ1, ξ3]E∗ + LLξ1
X2−Lξ2

X1ξ3

+ 2[d(e1, e2)−, ξ3]E∗ + 2d(ρ∗(ξ3)(e1, e2)−)− d〈[ξ1, ξ2]E∗ , X3〉

+ ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1)}+ c.p. (A.19)

The derivation of (A.19) is given in the next following section.
Substituting (A.19) into (A.16), I1 can be further organised and

I1 = {d{([e1, e2]V, e3)− − ρ(X3)(e1, e2)− − 2ρ∗(ξ3)(e1, e2)− + 〈[ξ1, ξ2]E∗ , X3〉 −K1 −K2}+ c.p.,

K1 = ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1),

K2 = Ld(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗ . (A.20)

From (3.30), using

([e1, e2]V, e3)− + c.p. = T (e1, e2, e3)

+ [{ρ(X3)(e1, e2)− + 2ρ∗(ξ3)(e1, e2)− − 〈[ξ1, ξ2]E∗ , X3〉+ c.p.}],
(3.30)
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I1 has the following form.

I1 = dT (e1, e2, e3)− {K1 +K2}+ c.p., (A.21)

here,

K1 = ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1),

K2 = Ld∗(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗ . (A.22)

The same applies for I2.

I2 = d∗T (e1, e2, e3)− {K3 +K4}+ c.p.,

K3 = ιξ3(d∗[X1, X2]E − LX1d∗X2 + LX2d∗X1),

K4 = Ld∗(e1,e2)−X3 + [d∗(e1, e2)−, X3]E. (A.23)

Thus, the final result of the calculation of [[e1, e2]V, e3]V + c.p is obtained as follows.

[[e1, e2]V, e3]V + c.p = I1 + I2

= DT (e1, e2, e3)− (J1 + J2 + c.p.). (A.24)

Here,

J1 = K1 +K3

= ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1) + ιξ3(d∗[X1, X2]E − LX1d∗X2 + LX2d∗X1),

J2 = K2 +K4

= Ld(e1,e2)−ξ3 + [d(e1, e2)−, ξ3]E∗ + Ld∗(e1,e2)−X3 + [d∗(e1, e2)−, X3]E. (A.25)

In general, for any Xi, ξi, f , (J1 + J2 + c.p.)is not 0. Therefore, Axiom C1 is broken in
(V , [·, ·]V, ρV, (·, ·)+).

A.3.1 Proof of formula (A.18)

We proof

ιXLξdη = [ξ,LXη]E∗ − LLξXη + [d〈η,X〉, ξ]E∗ + d(ρ∗(ξ)〈η,X〉)− d〈[ξ, η]E∗ , X〉. ((A.18))

As it is difficult to calculate the left-hand side directly, we calculate 〈ιXLξdη, Y 〉 and check
that the right-hand side and Y form an inner product, as follows.

〈ιXLξdη, Y 〉 = 〈[ξ,LXη]E∗ , Y 〉 − 〈LLξXη, Y 〉 − 〈[ξ, d〈η,X〉]E∗ , Y 〉

+ 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]E∗ , X〉, Y 〉 (A.26)

First, from the distributive law of the Lie derivative, it follows that

〈ιXLξdη, Y 〉 = Lξ(dη(X,Y ))− dη(LξX,Y )− dη(X,LξY ). (A.27)
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The first term of the right-hand side can be replaced by ρ∗(ξ)dη(X,Y ) by using (A.3). Also,
from the definition of the outer differential operator, we have

dξ(X,Y ) = ρ(X)〈ξ, Y 〉 − ρ(Y )〈ξ,X〉 − 〈ξ, [X,Y ]E〉. (A.28)

Applying this to each term, (A.27) can be transformed as follows.

〈ιXLξdη, Y 〉 = ρ∗(ξ)ρ(X)〈ξ, Y 〉 − ρ∗(ξ)ρ(Y )〈η,X〉 − ρ∗(ξ)〈η, [X,Y ]E〉

− ρ(LξX)〈η, Y 〉+ ρ(Y )〈η,LξX〉+ 〈η, [LξX,Y ]E〉

+ ρ(LξY )〈η,X〉 − ρ(X)〈η,LξY 〉 − 〈η, [LξY,X]E〉. (A.29)

Furthermore, using (A.2),(A.3)and (3.17) the first term in each row of (A.29) can be ex-
pansion as follows.

ρ∗(ξ)ρ(X)〈ξ, Y 〉 = ρ∗(ξ)〈LXη, Y 〉+ ρ∗(ξ)〈η, [X,Y ]E〉 (A.30)

ρ(LξX)〈η, Y 〉 = 〈LLξXη, Y 〉+ 〈η, [LξX,Y ]E〉 (A.31)

ρ(LξY )〈η,X〉 = 〈LLξY η,X〉+ 〈η, [LξY,X]E〉 (A.32)

Substituting and organising this, some of the terms cancel each other out and coalesce as
follows.

〈ιXLξdη, Y 〉 = ρ∗(ξ)〈LXη, Y 〉 − ρ∗(ξ)ρ(Y )〈η,X〉 − 〈LLξXη, Y 〉

+ ρ(Y )〈η,LξX〉 − ρ(X)〈η,LξY 〉+ 〈LLξY η,X〉. (A.33)

we rewrite this result in the form of an inner product with Y without using an anchor. First,
we focus on ρ(Y )〈η,LξX〉. This term can be rewritten from (A.2),(A.3) as

ρ(Y )〈η,LξX〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉 − 〈d〈[ξ, η]V, X〉, Y 〉. (A.34)

We substitute this,

〈ιXLξdη, Y 〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]V, X〉, Y 〉 − 〈LLξXη, Y 〉

+ ρ∗(ξ)〈LXη, Y 〉 − ρ∗(ξ)ρ(Y )〈η,X〉 − ρ(X)〈η,LξY 〉+ 〈LLξY η,X〉. (A.35)

Similarly, using (A.2),(A.3)to organise the second stage of (A.35), we obtain the following.

〈ιXLξdη, Y 〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]V, X〉, Y 〉 − 〈LLξXη, Y 〉

+ 〈[ξ,LXη]V, Y 〉 − Lξ〈LY η,X〉 − Lξ〈η,LYX〉 − 〈η,LXLξY 〉+ 〈LLξY η,X〉.
(A.36)

Here,

−〈η,LXLξY 〉+ 〈LLξY η,X〉 = 〈LLξY η,X〉+ 〈LLξY η,X〉

= 〈d〈η,X〉,LξY 〉. (A.37)
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So，

〈ιXLξdη, Y 〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]V, X〉, Y 〉 − 〈LLξXη, Y 〉

+ 〈[ξ,LXη]V, Y 〉 − Lξ〈LY η,X〉 − Lξ〈η,LYX〉+ 〈d〈η,X〉,LξY 〉. (A.38)

From the distributive law of the Lie derivative, it follows that

〈d〈η,X〉,LξY 〉 = Lξ〈d〈η,X〉, Y 〉 − 〈[ξ, d〈η,X〉]V, Y 〉. (A.39)

therefore,

〈ιXLξdη, Y 〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]E∗ , X〉, Y 〉 − 〈LLξXη, Y 〉

+ 〈[ξ,LXη]E∗ , Y 〉 − 〈[ξ, d〈η,X〉]E∗ , Y 〉

− Lξ〈LY η,X〉 − Lξ〈η,LYX〉+ Lξ〈d〈η,X〉, Y 〉. (A.40)

Here, the third line cancels out from the following calculation.

Lξ〈d〈η,X〉, Y 〉 = LξLY 〈η,X〉

= Lξ〈LY η,X〉+ Lξ〈η,LYX〉. (A.41)

therefore，

〈ιXLξdη, Y 〉 = 〈d(ρ∗(ξ)〈η,X〉), Y 〉+ 〈d〈[ξ, η]E∗ , X〉, Y 〉 − 〈LLξXη, Y 〉

+ 〈[ξ,LXη]E∗ , Y 〉 − 〈[ξ, d〈η,X〉]E∗ , Y 〉. (A.42)

A.3.2 Proof of formula (A.19)

We proof following fomula.

LX3 [ξ1, ξ2]E∗ + c.p. = [LX1ξ2 − LX2ξ1, ξ3]V + LLξ1
X2−Lξ2

X1ξ3

+ 2[d(e1, e2)−, ξ3]E∗ + 2d(ρ∗(ξ3) · (e1, e2)−)− d〈[ξ1, ξ2]E∗ , X3〉

+ iX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1) + c.p. (A.19)

First, after calculating LX3 [ξ1, ξ2]E∗ on the left-hand side, the right-hand side is confirmed
by taking its circular sum. The LX3 [ξ1, ξ2]E∗ can be expanded as follows according to the
definition of the Lie derivative. However, below the second equal sign, the terms in ιX3Lξ2dξ1
and the term in Lξ2dξ1 are deliberately added and subtracted respectively. This operation
allows the terms affected by the derivation condition to be made explicit.

LX3 [ξ1, ξ2]E∗ = (dιX3 + ιX3d)[ξ1, ξ2]E∗

= d〈[ξ1, ξ2]E∗ , X3〉+ ιX3Lξ1dξ2 − ιX3Lξ2dξ1
+ ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1). (A.43)

Subsequent calculations are simplified by focusing on the term ιX3Lξ1dξ2 − ιX3Lξ2dξ1 in
the first stage. From the calculations in the previous section, it can be seen that, in general

ιXLξdη = [ξ,LXη]E∗ − LLξXη + [d〈η,X〉, ξ]E∗ + d(ρ∗(ξ)〈η,X〉)− d〈[ξ, η]E∗ , X〉. (A.18)
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is satisfied．Substituting (A.18) into (A.43) , we obtain the following form.

LX3 [ξ1, ξ2]E∗ = −d〈[ξ1, ξ2]E∗ , X3〉

+ [ξ1,LX3ξ2]E∗ − LLξ1
X3ξ2 + [d〈ξ2, X3〉, ξ1]E∗ + d(ρ∗(ξ1)〈ξ2, X3〉)

− [ξ2,LX3ξ1]E∗ + LLξ2
X3ξ1 − [d〈ξ1, X3〉, ξ2]E∗ − d(ρ∗(ξ2)〈ξ1, X3〉)

+ ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1). (A.44)

Next, calculate the cyclic sum LX3 [ξ1, ξ2]V +c.p. of the (A.44). The terms corresponding to
the second and third stages of (A.44) can be summarised as follows.

[ξ1,LX3ξ2]E∗ − [ξ2,LX3ξ1]E∗ + c.p. = [LX1ξ2 − LX2ξ1, ξ3]E∗ + c.p., (A.45)

− LLξ1
X3ξ2 + LLξ2

X3ξ1 + c.p. = LLξ1
X2−Lξ2

X1ξ3 + c.p., (A.46)

[d〈ξ2, X3〉, ξ1]E∗ − [d〈ξ1, X3〉, ξ2]E∗ + c.p. = +2[d(e1, e2)−, ξ3]E∗ + c.p., (A.47)

d(ρ∗(ξ1)〈ξ2, X3〉)− d(ρ∗(ξ2)〈ξ1, X3〉) + c.p. = 2d(ρ∗(ξ3) · (e1, e2)−) + c.p. (A.48)

therefore, we obtain

LX3 [ξ1, ξ2]E∗ + c.p. = −d〈[ξ1, ξ2]E∗ , X3 + [LX1ξ2 − LX2ξ1, ξ3]E∗ + LLξ1
X2−Lξ2

X1ξ3

+ 2[d(e1, e2)−, ξ3]E∗ + 2d(ρ∗(ξ3) · (e1, e2)−)

+ ιX3(d[ξ1, ξ2]E∗ − Lξ1dξ2 + Lξ2dξ1) + c.p.. (A.49)

This is the right-hand side of the(A.19).

A.4 Axiom C2

Since we cannot compute this directly, we act arbitrary f ∈ C∞(M) for both side of (3.20).
We check that the following equation holds．

ρV([e1, e2]V)f = [ρV(e1), ρV(e2)]f (3.20’)

Expanding the left-hand side, from the definitions of ρ and [·, ·]V, we obtain the following
form.

ρV([e1, e2]V)f = ρV([X1 + ξ1, X2 + ξ2]V)f

= ρ{[X1, X2]E + Lξ1X2 − Lξ2X1 − d∗(e1, e2)−}f

+ ρ∗{[ξ1, ξ2]E∗ + LX1ξ2 − LX2ξ1 + d(e1, e2)−}f

= ρ([X1, X2]E)f + ρ(Lξ1X2)f − ρ(Lξ2X1)f

− 1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

+ ρ∗([ξ1, ξ2]E∗)f + ρ∗(LX1ξ2)f − ρ∗(LX2ξ1)f

+
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f (A.50)
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On the way, we used the fact that d∗ = ρ∗∗d0, d = ρ∗d0. here, [ρ(X1), ρ(X2)]と [ρ∗(ξ1), ρ∗(ξ2)]

becomes

[ρ(X1), ρ(X2)] = ρ([X1, X2]E)

[ρ∗(ξ1), ρ∗(ξ2)] = ρ∗([ξ1, ξ2]E∗)

from the difinition of ρ, ρ∗. So, we rewrite (A.50) as

ρV([e1, e2]V)f = [ρ(X1), ρ(X2)]f + ρ(Lξ1X2)f − ρ(Lξ2X1)f

− 1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

+ [ρ∗(ξ1), ρ∗(ξ2)]f + ρ∗(LX1ξ2)f − ρ∗(LX2ξ1)f

+
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f (A.51)

Note that [·, ·] is a Lie bracket on TM . Also, we use

[ρ(X), ρ∗(ξ)]f = −ρ(LξX)f + ρ∗(LXξ)f + (ρρ∗∗d0〈ξ,X〉)f

− 〈ξ,LdfX〉+ ρ(X)ρ∗(ξ)f − ρ∗(LXξ)f, (A.52)

(A.51) is further organised，

ρV([e1, e2]V)f = [ρ(X1), ρ(X2)]f + {ρ(Lξ1X2)− ρ∗(LX2ξ1)}f

− 1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

+ [ρ∗(ξ1), ρ∗(ξ2)]f − {ρ(Lξ2X1)− ρ∗(LX1ξ2)}f

+
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

= [ρ(X1), ρ(X2)]f + {ρ(Lξ1X2)− ρ∗(LX2ξ1)− ρρ∗∗d0〈ξ1, X2〉}f

+
1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

+ [ρ∗(ξ1), ρ∗(ξ2)]f − {ρ(Lξ2X1)− ρ∗(LX1ξ2)− ρρ∗∗d0〈ξ2, X1〉}f

+
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f. (A.53)
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From this, [ρ(X), ρ∗(ξ)]f can be summarised. The missing terms are added and subtracted
to balance the books as follows.

ρV([e1, e2]V)f = [ρ(X1), ρ(X2)]f − [ρ(X2), ρ∗(ξ1)]f

− 〈ξ1,LdfX2〉+ ρ(X2)ρ∗(ξ1)f − ρ∗(LX2)ξ1f

+
1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

+ [ρ∗(ξ1), ρ∗(ξ2)]f + [ρ(X1), ρ∗(ξ2)]f

+ 〈ξ2,LdfX1〉 − ρ(X1)ρ∗(ξ2)f + ρ∗(LX1ξ2)f

+
1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f

= [ρ(X1), ρ(X2)]f + [ρ∗(ξ1), ρ(X2)]f + [ρ∗(ξ1), ρ∗(ξ2)]f + [ρ(X1), ρ∗(ξ2)]f

− 〈ξ1,LdfX2 − [X2, d∗f ]E〉+ 〈ξ2,LdfX1 − [X1, d∗f ]E〉 (A.54)

Furthermore, from the definition of ρ, terms in the first line in (A.54) can be summarised
as follows,

ρV([e1, e2]V)f = [ρV(e1), ρV(e2)]− 〈ξ1,LdfX2 − [X2, d∗f ]E〉+ 〈ξ2,LdfX1 − [X1, d∗f ]E〉

+
1

2
ρρ∗∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f +

1

2
ρ∗ρ

∗d0(〈ξ1, X2〉 − 〈ξ2, X1〉)f. (A.55)

In general, the right-hand side is not 0 for any Xi, ξ1. Therefore, Axiom C2 is broken in
(V , [·, ·]V, ρV, (·, ·)+).

A.5 Axiom C3

We check the Axiom C3. Indeed, we expand the left-hand side [e1, fe2]V and show that we
arrive at the right-hand side. From the diffinition of the ρ,

[e1, fe2]V = [X1 + fξ1, X2,+fξ2]V

= [X1, fX2]V + [X1, fξ2]V + [ξ1, fX2]V + [ξ1, fξ2]V. (A.56)

here, from the difinition of the [·, ·]V, we obtain

[X1, fξ2]V = −Lfξ2X1 +
1

2
d∗(f〈ξ2, X1〉) + LX1(fξ2)−

1

2
d(f〈ξ2, X1〉)

= −fLξ2X1 − (d∗f)〈ξ2, X1〉+
1

2
(d∗f)〈ξ2, X1〉+

1

2
fd∗〈ξ2, X1〉

+ fd〈ξ2, X1〉+ ιXdfξ2 + fιXdξ2 −
1

2
(df)〈ξ2, X1〉 −

1

2
fd〈ξ2, X1〉

= f [X1, ξ2]V + (ρ(X1)f)ξ2 −
1

2
Df〈ξ2, X1〉. (A.57)

Similarly for [ξ1, fX2]V, from the difinition of the [·, ·]V, we obtain

[ξ1, fX2]V = f [ξ1, X2]V + (ρ∗(ξ1)f)X2 −
1

2
Df〈ξ1, X2〉. (A.58)
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Also, since L and L∗ are Lie algebroids respectively, it follows that

[X1, fX2]V = [X1, fX2]E = f [X1, X2]V + (ρ(X1)f)X2, (A.59)

[ξ1, fξ2]V = [ξ1, fξ2]E∗ = f [ξ1, ξ2]V + (ρ∗(ξ1)f)ξ2. (A.60)

therefore,

[e1, fe2]V = (A.56)

= (A.59) + (A.57) + (A.58) + (A.60)

= f [X1, X2]V + (ρ(X1)f)X2

+ f [X1, ξ2]V + (ρ(X1)f)ξ2 −
1

2
Dg〈ξ2, X1〉

+ f [ξ1, X2]V + (ρ∗(ξ1)f)X2 −
1

2
Df〈ξ1, X2〉

+ f [ξ1, ξ2]V + (ρ∗(ξ1)f)ξ2

= f [e1, e2]V + (ρV(e1)f)e2 −Df(e1, e2)−. (A.61)

so, Axiom C3 is hold in (V , [·, ·]V, ρV, (·, ·)+).

A.6 Axiom C4

Using the definition of D, the left-hand side of (3.22) can be transformed as follows. Here,
the external differential operator on Γ(T ∗M) is d0.

(Df,Dg)+ = (df + d∗f, dg + d∗g)+

=
1

2
(〈df, d∗g〉+ 〈dg, d∗f〉)

=
1

2
(ρ∗(df)g + ρ(d∗f)g)

=
1

2
(ρ∗ρ

∗d0f + ρρ∗∗d0f)g. (A.62)

Therefore, ρ∗ρ∗ = −ρρ∗∗ must hold for (A.62) to be 0 and for (3.22) to hold.
First, it is shown that if the derivation condition is imposed, the anchor ρ is always

antisymmetric ρρ∗∗ = −ρ∗ρ∗. However, as mentioned in the text, the superscript ∗ attached
to the anchor means adjoint operator and is defined by the transpose of the original operator
through the inner product.

ρ : E → TM ρ∗ : T ∗M → E∗

ρ∗ : E
∗ → TM ρ∗∗ : T

∗M → E (A.63)

Thus, ρρ∗∗ : T ∗M → TM and ρ∗ρ
∗ : T ∗M → TM .

In general, when an operator O : T ∗M → TM is antisymmetric, the following equation
holds for all abitary x ∈ Γ(T ∗M).

〈Ox, x〉 = 0. (A.64)
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By replacing the operator O with ρρ∗∗and x with d0f ∈ Γ(TM), the following relation is
obtained. Note that f ∈ Γ(TM) and d0 are external differential operators on T ∗M .

〈ρρ∗∗(d0f), d0f〉 = ρρ∗∗(d0f) · f = 0. (A.65)

Therefore, if (A.65) holds, then ρ∗ρ
∗ = −ρρ∗∗ holds.

Suppose that the following equation holds.

LdfX + [d∗f,X]E = 0 (3.53)

This equation is a concomitant expression from Proposition 3.4 of the reference [108], if the
derivation condition is satisfied. Replacing X by d∗f , the following relation holds.．

d∗

(
ρρ∗∗(d0f) · f

)
= 0. (A.66)

If f is replaced by f 2, then

d∗

(
ρρ∗∗(d0f

2) · f 2
)
= 0. (A.67)

On the other hand,

ρρ∗∗(d0f
2) · f 2 = 〈d0f

2, ρρ∗∗d0f
2〉 = 〈df 2, d∗f

2〉 = 4f 2〈df, d∗f〉, (A.68)

therefore, (
ρρ∗∗(d0f) · f

)
d∗f

2 = d∗

{(
ρρ∗∗(d0f) · f

)
f 2
}
− d∗

(
ρρ∗∗(d0f) · f

)
f 2

=
1

4
d∗

(
ρρ∗∗(d0f

2) · f 2
)
− d∗

(
ρρ∗∗(d0f) · f

)
f 2. (A.69)

here, some therms in right hand side is vanished by (A.66), (A.67),(
ρρ∗∗(d0f) · f

)
ρ∗∗d0f

2 = 0. (A.70)

Furthermore, given that this is an inner product with d0f ,

2f
(
ρρ∗∗(d0f) · f

)2
= 0. (A.71)

Therefore, if derivation conditions are imposed, 0 = ρρ∗∗(d0f) · f = 〈ρρ∗∗(d0f). For ρρ∗∗to be
antisymmetric, a derivation condition must be imposed.

The following calculations are supplementary to the above results. In the general case
where the derivation condition is not imposed, it is shown that the case where ρ∗ρ

∗ = −ρρ∗∗
does not hold cannot be excluded. Specifically, it is confirmed that (V , [·, ·]V, ρV, (·, ·)+)does
not satisfy the relation (3.22). We deerive the left-hand side of (A.65) in a different way
and show that it does not 0 in general.

From the properties of [·, ·]E, let X,Y ∈ Γ(E),

d∗[X, fY ]E = d∗(f [X,Y ]E + (ρ(X) · f)Y )

= d∗(f [X,Y ]E) + d∗((ρ(X) · f)Y )

= d∗f ∧ [X,Y ]E + f [X,Y ]E + d∗ρ(X) · f ∧ Y + ρ(X) · fd∗Y (A.72)
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is hold.Therefore, the following relationship holds.

[X, d∗f ]E ∧ Y = LdfX ∧ Y − d∗[X, fY ]E + fd∗[X,Y ]E

+ d∗f ∧ LXY + LXd∗f ∧ Y + (ρ(X) · f)d∗Y + fLY d∗X − fLfY d∗X

(A.73)

Replacing X by d∗f and rearranging, the following relation is obtained.

[d∗f, d∗f ]E ∧ Y = Ldfd∗f ∧ Y − d∗[d∗f, fY ]E + fd∗[d∗f, Y ]E

+ d∗f ∧ Ld∗fY + (ρ(d∗f) · f)d∗Y

= 0 (A.74)

Therefore, the following equation holds．

Ldfd∗f ∧ Y = d∗[d∗f, fY ]E − fd∗[d∗f, Y ]E − d∗f ∧ Ld∗fY − (ρ(d∗f) · f)d∗Y (A.75)

Also, (A.75) hold if f is replaced by f 2.

Ldf2d∗f
2∧Y = d∗[d∗f

2, f 2Y ]E−f 2d∗[d∗f
2, Y ]E−d∗f

2∧Ld∗f2Y −(ρ(d∗f
2)·f 2)d∗Y. (A.75′)

Furthermore, expanding from (A.65), we find that

ρρ∗∗(d0f
2) · f 2 = 〈ρρ∗∗(d0f

2), d0f
2〉

= 〈d∗f
2, df 2〉

= 4〈fd∗f, fdf〉

= 4f 2〈d∗f, df〉

= 4(ρρ∗∗(d0f) · f)f 2. (A.76)

So, if we act on both sides with d∗, we obtain

d∗(ρρ
∗
∗(d0f

2) · f 2) = 4d∗((ρρ
∗
∗(d0f) · f)f 2)

= 4f 2d∗(ρρ
∗
∗(d0f) · f) + 4(ρρ∗∗(d0f) · f)d∗f

2. (A.77)

The formula (A.73) can be rewritten as follows.

4f 2d∗(ρρ
∗
∗(d0f) · f) ∧ Y + 4(ρρ∗∗(d0f) · f)d∗f

2 ∧ Y

= d∗[d∗f
2, f 2Y ]E +

(
−(d∗f

2) ∧ Ld∗f2Y − fLd∗f2d∗Y − ρ(d∗f
2)[f 2]d∗Y

)
. (A.75”)

Substituting (A.75) on the left-hand side, we obtain

4f 2d∗[d∗f, fY ]E − 4f 2(d∗f) ∧ Ld∗fY − 4f 2Ld∗fd∗Y − 4f 2(ρ(d∗f) · f)d∗Y + 4(ρρ∗∗(d0f) · f)d∗f
2 ∧ Y

= d∗[d∗f
2, f 2Y ]E − (d∗f

2) ∧ Ld∗f2Y − fLd∗f2d∗Y − (ρ(d∗f
2) · f 2)d∗Y.
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Summarising this in terms of certain terms in ρρ∗∗(d0f) · fd∗f
2, we obtain

4ρρ∗∗(d0f) · fd∗f
2 ∧ Y = −4f 2d∗[d∗f, fY ]E + 4f 2(d∗f) ∧ Ld∗fY

+ 4f 2Ld∗fd∗Y + 4f 2ρ(d∗f) · fd∗Y

+ d∗[d∗f
2, f 2Y ]E − (d∗f

2) ∧ Ld∗f2Y

− fLd∗f2d∗Y − (ρ(d∗f
2) · f 2)d∗Y. (A.78)

We act ρ on both sides of (A.78), The left-hand side becomes

ρ((ρρ∗∗(d0f) · f)(d∗f
2)) = (ρρ∗∗(d0f) · f)ρ(d∗f

2)

= (ρρ∗∗(d0f) · f)ρρ∗∗(d0f
2)

= 2f((ρρ∗∗(d0f) · f)ρρ∗∗d0f). (A.79)

Therefoer, we obtain

4ρρ∗∗(d0f) · fd∗f
2 ∧ Y = 8f((ρρ∗∗(d0f) · f)ρρ∗∗d0f) ∧ Y. (A.80)

(If (ρ(X ∧ Y ) = ρ(X) ∧ ρ(Y ),) (A.78) can be written as follows.

8f(ρρ∗∗(d0f) · fρρ∗∗d0f) ∧ ρ(Y ) = −4f 2ρ(d∗[d∗f, fY ]E) + 4f 2ρ(d∗f) ∧ ρ(Ld∗fY )

+ 4f 2ρ(Ld∗fd∗Y ) + 4f 2ρ(d∗f) · fρ(d∗Y )

+ ρ(d∗[d∗f
2, f 2Y ]E)− ρ((d∗f

2)) ∧ ρ(Ld∗f2Y )

− fρ(Ld∗f2d∗Y )− (ρ(d∗f
2) · f 2)ρ(d∗Y ). (A.81)

Furthermore, taking the inner product with d0f on both sides, we obtain

8fιd0f (((ρρ
∗
∗(d0f) · f), ρρ∗∗d0f) ∧ ρ(Y ))

= 8fιd0f ((ρρ
∗
∗(d0f) · f), ρρ∗∗d0f) ∧ ρ(Y )− 8f((ρρ∗∗(d0f) · f), ρρ∗∗d0f) ∧ ιd0fρ(Y )

= 8f(ρρ∗∗(d0f) · f)2 ∧ Y − 8f((ρρ∗∗(d0f) · f), ρρ∗∗d0f) ∧ ιd0fρ(Y ). (A.82)

therefore,

8f(ρρ∗∗(d0f) · f)2 ∧ Y

= 8f((ρρ∗∗(d0f) · f)ρρ∗∗d0f) ∧ id0fρ(Y )

− 4f 2ρ(d∗[d∗f, fY ]E) + 4f 2ρ(d∗f) ∧ ρ(Ld∗fY )

+ 4f 2ρ(Ld∗fd∗Y ) + 4f 2ρ(d∗f) · fρ(d∗Y )

+ ρ(d∗[d∗f
2, f 2Y ]E)− ρ((d∗f

2)) ∧ ρ(Ld∗f2Y )

− fρ(Ld∗f2d∗Y )− (ρ(d∗f
2) · f 2)ρ(d∗Y ). (A.83)

Although there is a discrepancy of about a factor, the middle term of the (A.65) equation
appears on the left-hand side. In general, the right-hand side is clearly not 0 for arbitrary
f, Y , so the possibility that ρρ∗∗(d0f) · f is not 0 cannot be excluded.
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A.7 Axiom C5

We check the Axion C5

ρ(e)(e1, e2) = ([e, e1]V +D(e, e1), e2) + (e1, [e, e2]V +D(e, e2)). (3.23)

This can be shown immediately by using (A.5). From (A.5),

([e, e1]V, e2)+ = T (e, e1, e2) +
1

2
ρV(e)(e1, e2)+ −

1

2
ρV(e1)(e, e2)+

(e1, [e, e2]V)+ = T (e, e2, e1) +
1

2
ρV(e)(e2, e1)+ −

1

2
ρV(e2)(e, e1)+

Adding these two equations, we obtain the following relationship (T (e, e2, e1) is fully anti-
symmetric).

([e, e1]V, e2)+ + (e1, [e, e2]V)+

= T (e, e1, e2) + T (e, e2, e1) + ρV(e)(e1, e2)+ −
1

2
ρ(e1)(e, e2)+ −

1

2
ρ(e2)(e, e1)+

= ρV(e)(e1, e2)+ −
1

2
ρ(e1)(e, e2)+ −

1

2
ρ(e2)(e, e1)+ (A.84)

We solve (A.84) for ρ(e)(e1, e2)+ and obtain the following fomula.

ρ(e)(e1, e2)+ = ([e, e1]V, e2)+ + (e1, [e, e2]V)+ +
1

2
ρV(e1)(e, e2)+ +

1

2
ρV(e2)(e, e1)+ (A.85)

Here, the definition of the ρ and D, and using ei = Xi + ξi,

1

2
ρV(e1)(e, e2)+ =

1

2
ρ(X1)(e, e2)+ +

1

2
ρ∗(ξ1)(e, e2)+

=
1

2
(〈X1, d(e, e2)+〉+ 〈ξ1, d∗(e, e2)+〉)

= (d(e, e2)+ + d∗(e, e2)+, X1 + ξ1)+

= (D(e, e2)+, e1)+. (A.86)

Similary,
1

2
ρV(e2)(e, e1)+ = (D(e, e1)+, e2)+. (A.87)

We substitute these into (A.85)，

ρV(e)(e1, e2)+ = ([e, e1]V, e2)+ + (e1, [e, e2]V)+ + (D(e, e2)+, e1)+ + (D(e, e1)+, e2)+
= ([e, e1]V +D(e, e1), e2) + (e1, [e, e2]V +D(e, e2)) (A.88)

(A.88) is exactly (3.23) itself. Therefore, Axiom C5 holds in (V , [·, ·]V, ρV, (·, ·)+).

A.8 NK = NP +NP̃

The NK is a quantity used to evaluate the integrability of the approximate para-complex
structure, given by

NP (X,Y ) = P̃ [P (X), P (Y )], NP̃ (X,Y ) = P [P̃ (X), P̃ (Y )] (A.89)
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In this case, we verify that NK(X,Y ) = NP (X,Y ) +NP̃ (X,Y ).
From the definition of P, P̃ , NP (X,Y ), NP̃ (X,Y )) can be written down so that K is

revealed as follows.

NP (X,Y ) = P̃ [P (X), P (Y )]

=
1

2
(1−K)

[
1

2
(1 +K)X,

1

2
(1 +K)Y

]
=

1

2
(1−K)

1

4
[X +K(X), Y +K(Y )]

=
1

2
(1−K)

1

4

(
XY +XK(Y ) +K(X)Y +K(X)K(Y )

− Y X − Y K(X)−K(Y )X −K(Y )K(X)
)

=
1

2
(1−K)

1

4
([X,Y ] + [X,K(Y )] + [K(X), Y ] + [K(X), K(Y )])

=
1

8
([X,Y ] + [X,K(Y )] + [K(X), Y ] + [K(X), K(Y )])

+
1

8
(−K[X,Y ]−K[X,K(Y )]−K[K(X), Y ]−K[K(X), K(Y )]).

Similarly,

NP̃ (X,Y ) = P [P̃ (X), P̃ (Y )]

=
1

2
(1 +K)

[
1

2
(1−K)X,

1

2
(1−K)Y

]
=

1

2
(1 +K)

1

4
[X −K(X), Y −K(Y )]

=
1

2
(1 +K)

1

4

(
XY −XK(Y )−K(X)Y +K(X)K(Y )

− Y X + Y K(X) +K(Y )X −K(Y )K(X)
)

=
1

2
(1 +K)

1

4
([X,Y ]− [X,K(Y )]− [K(X), Y ] + [K(X), K(Y )])

=
1

8
([X,Y ]− [X,K(Y )]− [K(X), Y ] + [K(X), K(Y )])

+
1

8
(K[X,Y ]−K[X,K(Y )]−K[K(X), Y ] +K[K(X), K(Y )]).

Therefore,

NP (X,Y ) +NP̃ (X,Y ) =
1

8
([X,Y ] + [X,K(Y )] + [K(X), Y ] + [K(X), K(Y )])

+
1

8
(−K[X,Y ]−K[X,K(Y )]−K[K(X), Y ]−K[K(X), K(Y )])

+
1

8
([X,Y ]− [X,K(Y )]− [K(X), Y ] + [K(X), K(Y )])

+
1

8
(K[X,Y ]−K[X,K(Y )]−K[K(X), Y ] +K[K(X), K(Y )])

=
1

4
([X,Y ]−K[X,K(Y )]−K[K(X), Y ] + [K(X), K(Y )])

= NK(X,Y ). (A.90)
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hence, if NP (X,Y ), NP̃ (X,Y ) as

NP (X,Y ) = P̃ [P (X), P (Y )], NP̃ (X,Y ) = P [P̃ (X), P̃ (Y )], (A.91)

NK = NP +NP̃ is satisfied.
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