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1. Introduction

Sexual dimorphism normally occurs after gonadal sex determination in vertebrates. In the genetic
sex-determining systems, gonadal sex is determined by sex-determining genes on the sex chromosome,
such as mammalian Y-linked Sry, chicken Z-linked Dmrt!, the African clawed frog W-linked Dm-W,
and teleost fish medaka Y-linked dmy/Dmrtl (Matsuda et al. 2002; Nanda et al. 2002; Smith et al.
2009; Yoshimoto et al. 2008). It is generally believed that these sex-determining genes are expressed
in the somatic cells of gonads, leading to primary ovarian or testicular formation. After sex
determination, primordial germ cells (PGCs) differentiate into primary oogonia or spermatogonia
(female and male germ stem cells [GSCs]). However, the molecular and morphological differences

between the female and male GSCs in many vertebrates remain unclear.

Dmrtl (Doublesex and Mab3 Related Transcription factor) encodes a transcription factor
characterized by the presence of a DNA-binding domain called the DM domain. Dmrtl induces testis
formation, and is required for somatic-cell masculinization, which leads to testis formation in various
vertebrate species (Lambeth et al. 2014; Masuyama et al. 2012; Smith et al. 2009; Yoshimoto et al.
2010; Zhao et al. 2015). Its paralogs include the X. laevis and medaka sex-determining genes, dm-W
and dmy/DmrtIbY. In mice, Dmrtl-deficient Sertoli cells are reprogrammed into granulosa cells
during postnatal development, indicating that Dmrtl plays an important role in the regulation of
somatic cell masculinization (Matson et al. 2011). In view of transcriptional control, Dmrtl could
repress transcription of five feminizing genes, FoxI2, Esrl, Esr2, Wnt4 and Rspol as a repressor, but
activate three masculinizing genes Prgdr, Sox9, and Sox8 as an activator (Matson et al. 2011). Thus,
Dmrt] might be a masculinizing master gene in vertebrates. Dmrtl also contributes to the
development of both female and male germ cells in mice. Curiously, mouse Dmrt1 negatively controls
meiosis in male germ cells by repressing Stra8 transcription (Matson et al. 2010), but promotes
meiosis in female germ cells by enhancing Strad8 transcription (Krentz et al. 2011). However, there

have been few reports investigating Dmrt1’s functions in the GSCs of other vertebrate species.

Another factor involved in germ cell development is YH2AX, a phosphorylated form of the
H2A variant, H2AX. yH2AX is induced by double-strand breaks (DSBs) in DNA, and contributes to
DNA repair in mitotic cells. In several organisms, YH2AX is also involved in meiotic recombination
and/or sex chromosome inactivation from the leptotene to diplotene stages in meiotic germ cells
(Chicheportiche et al. 2007, Turner et al. 2004). To date, the presence of YH2AX has been
demonstrated in spermatogonia (Blanco-Rodriguez 2009), but not in PGCs or oogonia. In addition, the

function of yH2AX has not been understood in these GSCs yet.

To investigate the role of these two factors in the development of sexual dimorphism in

GSCs and somatic cells in X laevis, I performed immunostaining with antibodies against Dmrtl and



yH2AX using genetically female (ZW) and male (ZZ) gonads from various stages of development.
During the early stages of sex differentiation, Dmrt] and YH2AX were expressed in both the ZW and
77 GSCs. In vitellogenic ovaries, the nuclei and cell bodies of the female GSCs underwent
condensation, and YH2AX expression was Dbarely detected in the condensed nuclei after
metamorphosis, but was still detected in the nuclei of male GSCs. Similarly, Dmrt] expression in male

GSCs continued during development, but was confined to only certain types of female GSCs.

Moreover, to understand the transcriptional regulation by Dmrtl, I identified Prkra as a
Dmrt1-binding protein from X. laevis testis. Prkra strongly enhanced the transcriptional activity of
Dmrtl in transfected 293T cells. Interestingly, tumor suppressor p53 greatly repressed Dmrtl’s

transcriptional activity and the Prkra -enhanced activity in transfected 293T cells.

I discuss sexual dimorphism between female and male GSCs, and the potential functions of
Dmrt]l and yH2AX in the GSCs during development, and then about the regulatory system of Dmrtl
together with p53 and Prkra.



2. Methods
2-1. Animal care and use

All of the experimental procedures involving X. laevis were approved by the Institutional Animal Care
and Use Committee of Kitasato University. X. laevis frogs at various developmental stages were
purchased from Watanabe Zoushoku (Y achiomachi, Japan) and maintained at 22 °C. Tadpole
developmental stages were identified according to the descriptions by Nieuwkoop and Faber
(Nieuwkoop and Faber 2006)

2-2. Tissue sample preparation

Gonadal tissues were isolated from X. laevis tadpoles and adults at different stages of development. -
Tissue samples were fixed in 4% paraformaldehyde solution (4% paraformaldehyde, 70 mM
phosphate buffer [pH 7.3]) and embedded in paraffin. Paraffin sections (7 pm) were generated and

used for immunohistochemical experiments.

2-3. Real-time reverse transcription quantitative PCR (RT-qPCR)

Total RNAs were isolated from the tissues of ZZ and ZW gonads at various stages of development,
using the RNeasy Mini Kit (Qiagen, Venlo, Netherlands). RNA (1 pg) was reverse transcribed with
the Transcriptor First Strand ¢cDNA Synthesis Kit (Roche, Basel, Switzerland), according to the
manufacturer’s instructions. RT-qPCR was carried out using the SYBR Green Realtime PCR Master
Mix (ToYoBo, Osaka, Japan). Dmrtl, Stra8 or Prkra ¢cDNA were amplified using the following
primer pairs: 5°-GGGATTGCCAGTGCAAAAAG-3 i (forward) and 5
-TTCCAGCATCAAGCAAGAGC-3™ (reverse) or 5 TACCTCAGCCAGGAGTGTG-3" (forward)

and 5" TGTCCATAGTCTGCTGGTAG-3 (reverse), 5’-CAGCTGCTGCATGAATTTG-3 (forward)
and 5°-CTCTCCTAAGCTAGTTATGTCACC-3’ (reverse), respectively.

2-4. Antibodies

The mouse monoclonal anti-VASA antibody and rabbit polyclonal anti-Dmrtl antibody were

produced using the X. laevis VASA-like protein and Dmrtl as antigens, and were described elsewhere



(Komiya et al. 1994; Yoshimoto et al. 2010). The anti-phospho-Histone H2A.X (Serl39) and
anti-BrdU (5-bromo-2’-deoxyuridine) rabbit polyclbnal antibodies were purchased from EMD
Millipore (Billerica, MA, USA) and Cell Signaling Technology (Beverly, MA, USA), respectively.
Alexa 488- and 594-conjugated goat anti-mouse and anti-rabbit IgG antibodies were purchased from
Invitrogen (Carlsbad, CA, USA).

2-5. Immunohistochemistry

The paraffin sections were deparaffinized in xylene followed by rehydration in a graded ethanol series.
After washing in H,O, the sections were boiled in 10 mM citrate buffer (pH 6.0) for antigen
unmasking. The sections were then incubated overnight at 4 °C with anti-Dmrtl (1:1000) and
anti-VASA (1:500) antibodies, which were diluted in PBS (without calcium or magnesium) containing
02 % skim milk and 0.05 % Triton X-100. Alexa 488- and 594-conjugated goat anti- [mouse IeG
(1:2000)] and anti-[rabbit IgG (1:2000)] anti- bodies (Invitrogen) were used to detect the primary
antibodies. Images of 0.2 um optical sections were captured and analyzed by the (Carl Zeiss

Microscopy, Goettingen, Germany).

2-6. BrdU incorporation

Tadpoles or frogs were injected intraperitoneally with BrdU (diluted in 70 mM phosphate buffer) at
600 pg/g body weight, and sacrificed 4 or 24 h later. Tissue sections were deparaffinized and
incubated in 1 M NaCl at 37 °C for 2 h, followed by neutralization in 0.1 M borate buffer (pH 8.5).
The sections were blocked and then incubated overnight at 4 oC with anti-BrdU (1:200) and
anti-Dmrt1 (1:10000) antibodies. The sections were washed, and then the signals were detected as

described above.

2-7. Immunogen preparation

Bacterial expression vector pMALc2-Dmrtl (130-336) was constructed by inserting the region
encoding residues from 130 to 336 of X, laevis Dmrtl into pMAL-c2 (New England Biolabs). The
recombinant protein was produced in E. coli Rosetta (DE3) pLysS (Novagen) BL21(DE3), and
purified using amylose resin (New England Biolabs), followed by elution with 10 mM maltose,

according to the manufacturer’s instructions. The purified protein was dialyzed with phosphate



buffered saline (PBS) and used as an immunogen.

2-8. Production of mouse anti-Dmrt1 monoclonal antibodies

Mouse monoclonal anti-Dmrt1 antibodies were generated based on the mouse medial iliac lymph node
method (Sado et al. 2006). Briefly, the purified protein was injected into the tail base with Freund's
complete adjuvant. Three weeks later, cells from the lymph nodes of the immunized mice were fused
with mouse myeloma. The resulting hybridoma cells were plated onto 96-well plates and cultured in
HAT (hypoxanthine aminopterin thymidine) selection medium. Monoclonal antibodies were purified

from the hybridoma supernatants by jon-exchange chromatography.

2-9. Inmunoblotting

Samples were ran by 10% SDS-PAGE and transferred to FluoroTrans 0.2 ym membrane (PALL). The
membrane was blocked with 5% skim milk in PBS, incubated with purified monoclonal antibodies
(1:400) or the 1:10000 anti-Dmrt] rabbit polyclonal antibody (Fujitani et al. 2016) at 4 °C for
overnight, and then washed with PBST (0.1% Tween-20 in PBS). Then it was incubated with
anti-mouse or anti-rabbit IgG-HRP-conjugated secondary antibodies at room temperature for an hour,
and then washed. Signals were detected using ImmunoStar LD substrate (Wako) and C-Digit
(LI-COR). Both the anti-mouse and anti-rabbit HRP-conjugated antibodies were purchased from
SIGMA, and diluted 1:20000).

2-10. Immunoprecipitation (IP)

Transfected 293T cells or testes dissected from one-year-old adult X. laevis were homogenized in
RIPA buffer, followed by sonication. The cell extracts from a 35 mm dish with 1 pg of each
anti-Dmrt] monoclonal antibody or the testicular extracts (10 mg) with 100 pg of the anti-Dmrtl
monoclonal antibody 4F6 were mixed with 100 pl of EZveiw Red Protein G Affinity Gel (SIGMA),
were incubated overnight at 4 °C . Mouse normal IgG (Santa Cruz Biotechnology; sc-2025) was used
as a negative control. The gels were washed twice with RIPA buffer, and the denatured proteins were
run by SDS-PAGE (Perfect NT Gel W, 10-20% acrylamide, 28 wells; DRC Co. Ltd.). Silver staining
was performed by 2D-SILVER STSIN II (COSMO BIO; 423413) for MS/MS analysis.

2-11. Enzymatic in-gel protein digestion

The gels containing the interest bands were cut into small pieces, destained in 50% ACN/50 mmol/L
NH4HCO3, washed with deionized water, dehydrated in 100% CAN, and dried in evaporator. The gel
pieces were rehydrated in 25 mM Tris-HCl (pH 9.0)/20% ACN containing 50 ng/mL trypsin
(sequencing grade; Roche) for 45 min. After unabsorbed solution was removed, the gel pieces were

incubated in 50 mM Tris-HCI (pH 9.0) for 20 h at 37 °C. The solution was transferred to a new tube.



In addition, the remaining fragments were extracted in 5% formic acid/50% ACN for 20 min at room

temperature, and transferred to the tube.

2-12. Protein identification by LC-MS/MS analysis
The digested peptides were desalted and separated by HPLC (the EASY-nLC 1000, Thermo Fisher
Scientific) and analyzed by mass spectrometer (Q-Exactive mass spectrometer, Thermo Fisher

Scientific). Then the proteins were identified by using the obtained data and X. laevis database.

2-13. ¢cDNA cloning and plasmid construction

Phb2, Yb-1, and Prkra cDNAs were amplified from X. laevis adult testis cDNA by PCR using
PrimeSTAR polymerase (TaKaRa) with primer sets Phb2 (5’-GCTCAGAATTTAAAGGATTTTGC-S’,
5° TCACTTCTTTCCTTGTTTGAAAAC-3"), Yb-1 (5’-AGCAGCGAGGTTGAAACAC-3’,
5°.TTACTCAGCCCCGCCCTG-3’) and Prkra 5 TCCCAGGAGAGGTTTCCAG-3’,
5 TCACTTTTTAATACACATGATTTTTA-3’), respectively. PCR products were cloned into a
vertebrate expression vector pcDNA3-S-Tag (Ito et al. 1999). Effector plasmids used for luciferace
reporter assay pcDNA3-FLAG-p53 was cloned into a vertebrate expression vector pcDNA3-FLAG
(Ito et al. 1999) by PCR using PrimeSTAR polymerase (TaKaRa) with the following primer pair
(5°-GAACCTTCCTCTGAGAC-3 5 -TCATTCCGAGTCGGGCTGTTC-3").

2-14. Luciferase reporter assay

24 hours before transfection, 293T cells were plated at 5x 10* cells per well in 48-well plate. The cells
were transfected with luciferase reporter plasmid p4xDmrtl-luc (Yoshimoto et al. 2010), effector
plasmids, and Renilla luciferase vector pRL-SV40 (Promega) by PEI. After 24 hours, luciferase
activities were measured by Luminocounter 700 (NITI-ON). Each firefly luciferase activity was

normalized by Renilla luciferase activity using the dual luciferase assay system (Promega).

2-15. Whole mount in situ hybridization

Whole mount in situ hybridization for X. laevis Prikra mRNA was performed as described previously
(Wada et al. 2017), using DIG-labeled sense or anti-sense probes from nucleotides 1-930 in genebank
number NM_001086031.1.

2-16. Statistical analysis
Two-group, or multiple group comparisons were performed by Student’s t-test, or one-way ANOVA

followed by Tukey HSD test, respectively. Significance for all test was set at p <0.05.



3. Results
3-1. Dmrtl is expressed at similar levels in ZZ and ZW gonads during early sex differentiation

To examine the Dmrt] expression during ZZ and ZW gonadal development after sex determination, I
conducted quantitative RT-PCR (RT-gPCR) experiments using total RNA samples from pools of ZW
and ZZ gonads at various developmental stages. At stage 50, just after sex determination, Dmrtl
expression was slightly higher in the ZW gonads than in the ZZ gonads (Fig. 1). However, during
most stages of tadpole development, it was expressed at similar levels in the ZW somatic cells actively
proliferate in the ZZ and ZW gonads, which share a similar morphology. Female GSCs are located in
the cortical region of the ZW gonads, while male GSCs are mainly located in the medulla in the ZZ
gonads (Yoshimoto et al. 2008). During these stages, the nuclei of the ZZ and ZW GSCs were large
and unstructured, similar to their morphologies in the PGCs of the female and male gonads before sex
determination (Fig. 2A). To clarify the localization of Dmrtl in the developing gonads, I performed
immunohistochemical analysis using stage-36 tadpoles and an anti-Dmrtl antibody, as well as an
antibody to VASA, a germ-line-specific protein. Dmrtl was highly expressed in the large,
unstructured nuclei (green) in both the primary oogonia and spermatogonia, while VASA was
expressed in the cytoplasm (red) of these cells (Fig. 2A). The strong expression of Dmrtl in both the
77 and ZW GSCs was consistent with the results of my RT-qPCR experiments (Fig. 1). Importantly,
weaker, but substantial Dmrtl expression was observed in the somatic cells surrounding the primary
spermatogonia in the ZZ gonads at stage 56 (Fig. 2A, arrows). In contrast, there was no detectable
Dmrt] expression in the somatic cells of the ZW gonad. These findings supported a role for Dmrtl in
GSC development and a male-specific function in somatic cell masculinization, which leads to

testicular development after sex determination (Yoshimoto et al. 2010).

3-2. Primary oogonia exhibit nuclear and cell body morphological changes during tadpole

development

During the later stages of metamorphosis (stages 59-65), differences between male and female germ
cell morphologies, but not tissue morphologies were observed. At stage 62, many cysts consisting of
secondary oogonia, which were proliferating or entering their first meiosis, were observed in the ZW
gonads by staining for Dmurtl and VASA (Fig. 2B). Notably, the primary oogonia underwent
significant changes in cell morphology: their cell bodies shrank and their large, distorted nuclei
became more condensed, taking on a round or elliptical shape (Fig. 2A). However, they were still

located in the cortex of the gonads. Dmrtl was expressed in the primary oogonia (arrows in Fig. 2B)



and in subpopulations of secondary oogonia in the cysts, but was barely detected in the primary
oocytes (Fig. 2).

In the ZZ gonads, the primary structure of the testis cord was evident at these stages. The
primary spermatogonia were surrounded by slender somatic cells (pre-Sertoli cells). As expected,
Dmrtl was highly expressed in the primary spermatogonia, whereas its expression in the surrounding
pre-Sertoli cells (arrowheads in Fig. 2B) was relatively low. The nuclei of the primary spermatogonia

remained large and distorted (Fig. 2B).

3-3. Meiotic female and male germ cells express little or no Dmrtl1 after metamorphosis

After metamorphosis, the female and male gonads (ovaries and testes) show distinct differences n
gross morphology. In the ZW ovaries, a sequence of hollow segmental cords, called ovarial sacs is
formed. At the microscopic level, diplotene oocytes during vitellogenesis are frequently observed in
the region surrounding the ovarian cavities. However, the oogonia remain in the cortex.
Immunohistochemical analysis of ovarian Dmrt] expression two weeks after metamorphosis revealed
that Dmrtl was expressed in the primary oogonia with condensed nuclei (Fig. 3A). In contrast, there
was no detectable Dmrtl expression in the somatic cells or oocytes at various stages including
diplotene (Fig. 3A). Analysis of the ZZ testes showed that their cephalocaudal dimensions were
shorter after metamorphosis. Several types of cysts appeared during germ cell development, which
consisted of synchronized secondary spermatogonia, spermatocytes, Or spermatids. Dmrtl was
expressed in the primary spermatogina, secondary spermatogonia, and Sertoli cells (Fig. 3B), but not
in the spermatocytes or spermatids in the immature testes one month after metamorphosis (data not
shown) or in these cells in mature testes (Fig. 3B). Notably, the primary spermatogonia consisted of

Dmrt1-high and -faint expressing cells (Fig. 3B, arrowhead and arrow, respectively).

3-4. Dmrtl expression is not directly involved in GSC proliferation

Since Dmrt] was expressed in some cysts consisting of synchronized secondary oogonia in immature
ovaries and in some primary spermatogonia in the mature testis (Fig. 3), I sought to determine if there
was a relationship between Dmrtl expression and cell proliferation. I labeled proliferating cells in the
immature and mature gonads by injecting BrdU into stage-62 tadpoles and adult frogs, and detecting
the labeled cells with an anti-BrdU antibody. In the immature ovary, some, but not all of the
Dmrtl-expressing secondary oogonia were BrdU-positive, and many Dmrtl-expressing primary

oogonia were BrdU-negative (Fig. 4). In the adult testis, Dmrtl expression in the secondary



spermatogonia was not strongly related to the degree of BrdU incorporation (Fig. 4). In addition, there

was no relationship between Dmrt] expression and BrdU incorporation in the primary spermatogonia.

3-5. A phosphorylated form of H2AX (YH2AX) and Dmrtl are coexpressed in primary

spermatogonia and oogonia

yH2AX, which is a phosphorylated form of the histone variant H2AX, is involved in DNA repair in
most cells or meiosis in both female and male germ cells. yH2AX is also expressed in embryonic stem
cells and neural stem cells in mammals (Banath et al. 2009; Fernando et al. 2011). To examine the
yH2AX expression in GSCs, I performed immunohistochemical analysis of ZZ and ZW gonads at
various developmental stages using both anti-yH2AX and anti-Dmrtl antibodies. YH2AX was
markedly expressed in the primary spermatogonia and oogonia, but not in the somatic cells of the 77
and ZW gonads at stage 53, just after sex determination (Fig. SA). The colocalization of yH2AX and
Dmrt] was observed in the auclei of the primary GSC cells.

3-6. yH2AX is differentially expressed in female and male GCSs after metamorphosis

In the ZW gonads at stage 62, the YH2AX signal was markedly expressed in the primary oocytes (Fig.
5A). The same pattermn of yH2AX expression was observed at later stages of gonadal development. In
contrast, YH2AX was expressed at similar levels in the primary spermatogonia at stages 53 and 62. In
the adult testis, YH2AX was expressed in some Cysts consisting of synchronized spermatocytes or
secondary spermatogonia, as well as in the primary spermatogonia (Fig. 5B). Taken together, my
findings suggested that Dmrtl and yH2AX are coexpressed in primary and secondary spermatogonia
throughout testicular development and that YH2AX is differentially expressed in female and male
GSCs after metamorphosis.

3.7. Mouse monoclonal antibody 4F6 reacts specifically to X. laevis Dmrtl

To identify Dmrtl-associating proteins in X, laevis testes by proteome analysis, 1 made mouse
monoclonal antibodies against the truncated C-terminal protein of X. laevis Dmrtl from 130 to 336 a.a,
which contained a specific region among DM domain family proteins. I examined specificity of
twenty monoclonal antibodies to Dmrtl by immunoblotting, immunoprecipitation (IP) and
immunohistochemistry (IHC), and then selected the antibody 4F6. The results using 4F6 were shown
in Fig. 6. 4F6 reacted specifically to overexpressed FLAG-tagged Dmrtl m 293T cells on immunoblot



analysis (Fig. 6A). Inmunoprecipitates by IP using 4F6 from the extract of 293T cells overexpressing
FLAG-tagged Dmrt1 showed specific reaction with the anti-FLAG antibody (Fig. 6B). In addition, the
analysis of THC with 4F6 or the anti-Dmrtl polyclonal antibody (Fujitani et al. 2016) on the section of
adult testis revealed that both of the antibodies reacted to the exact same cells, that is, spermatogonia
and Sertoli cells (Fig. 6C).

3-8. Prkra has potential to enhance transcriptional activity of Dmrtl

Immunoprecipitates by the anti-Dmrt] monoclonal antibody 4F6 and normal mouse IgG as a negative
control from X, laevis adult testes were separated by SDS-PAGE, followed by silver staining. I
compared the staining patterns between the two IP samples, and observed seven bands specific to 4F6
(Fig. 7). Then, each band derived from 4F6 and its corresponding region derived from normal IgG
were excised from the gels, and analyzed by MASS spectrometry. I identified 332 proteins from the IP
sample by 4F6. Then, 124 proteins were selected as the 4F6-specific proteins, because the remaining
208 proteins were also found in the sample using normal IgG. I next focused on three proteins,
Prohibitin 2 (Phb2), Y-box binding protein-1 (Y b-1), and Protein Kinase, Interferon-Inducible Double
Stranded RNA Dependent  (Prkra), which are all known to function in nuclei.

To clarify how Phb2, Yb-1, and Prkra are involved in Dmrt1 function, I investigated an effect
of each protein on transcriptional regulation by Dmitl using luciferase reporter assay. Expression
plasmids for each protein and Dmrtl as well as a Dmrtl-driven luciferase reporter plasmid carrying
four repeats of Dmrtl-binding sequence 5" TTGATACATTGTTGC-3" (Yoshimoto et al. 2010) were
co-transfected into 293T cells (Fig. 8). Exogenous expression of Phb2 had a little less effect and Yb-1
had more effect on luciferase activities driven by Dmrtl. In contrast, Prkra greatly enhanced the
Dmrt1-driven activity in a dose-dependent manner (Fig. 8 and Fig. 9).

I also examined whether each protein could directly interact with Dmrtl in cultured cells.
After co-expression of Dmrtl and S-tagged Phb2, Yb-1, and Prkra in 293T cells, the cell extracts were
mixed with S-protein agarose. Then, the pull-down samples as well as the cell extracts were examined
by Western blot analysis (data not shown). No signals for Dmrt1 that bound to Phb2, Yb-1, or Prkra

could be detected, indicating the possibility of their indirect interactions with Dmrt1.

3-9. p53 has the potential to repress transcriptional activity of Dmrtl

Prkra was characterized as a negative regulator of p53 (Li et al. 2007). Then, I investigated the effects
of p53 on transcriptional activity of Dmrtl in the presence and absence of exogenous Prkra by
Juciferase reporter assay in co-transfected 293T cells (Fig. 9). The Dmrtl-driven luciferase activity
enhanced by Prkra was strongly downregulated by p33 expression dose-dependently. Interestingly,
even in the assay without exogenous Prkra, the Dmrt1-driven activity was also significantly repressed

by p33 expression in a dose-dependent manner.
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3-10. Prkra mRNA expresses in germ stem cells of the tadpole gonads

Because Prkra can contribute to upregulation of Dmrtl function, I next investigated an expression
profile of Prkra mRNA in developing gonads in X. laevis. I first performed RT-qPCR of Prkra
transcripts during gonadal development (Fig. 10A). The Prkra transcripts showed no or a few
significant differences between ZW and ZZ gonads from stage 50 just after sex determination to stage
65 when metamorphosis is almost completely finished. In addition, the transcripts of ZW or ZZ
gonads exhibited uniform expression during tadpole development. In contrast, the amount of the Prkra
mRNA gradually increased in adult testes from six weeks after metamorphosis to one to two years,
which might be related to a prosperous spermatogenesis.

Next, to clarify topological distribution of the Prkra mRNA, I performed a whole mount in
situ hybridization of stage 56 ZW and ZZ tadpole gonads, which started displaying sexual differences
in morphology, using DIG-labeled Prkra RNA sense and anti-sense probes. To identify
Prkra-expressing cells, I made their sections, followed by immunostaining with an anti-VASA
antibody and nuclear staining with Hoechest 33258 (Fig. 10B). Germ stem cells are characterized as
not only expression of VASA, but also faint staining of nuclel. Although almost no signals were
detected in the case of the sense probe, the anti-sense probe seemed to hybridize the Prkra mRNA in
both somatic and germ cells of the ZW and ZZ gonads. However, strong signals were observed in

some germ stem cells indicated by arrowhead, of both sexes.
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4. Discussion

The transcription factor Dmrtl has the potential to both activate and repress the expression of its target
genes. In the somatic cell masculinization in mouse postnatal gonads, Dmrt] activates the expression
of Sox8, Sox9, and Ptgdr, and represses the transcription of FoxlI2, Esrl/2, Wnt4, and Rspol (Matson
et al. 2011). In mouse germ cells, it positively and negatively regulates the expression of Stra8, which
is involved in the premeiotic phases of oogenesis and spermatogenesis, respectively (Krentz et al.
2011; Matson et al. 2010). It has also been reported that Dmrtl protects male GSCs against
pluripotency and apoptosis in mice (Takashima et al. 2013b). In X. laevis, Dmrt] was expressed in the
primary oogonia and spermatogonia at an early stage of sex differentiation (Fig. 2), but its expression
was reduced or absent in some subpopulations of secondary oogonia (Figs 2 and 3). Moreover, Dmrtl
expression was not involved in the proliferation of primary or secondary GSCs in either sex (Fig. 4).
Collectively, these findings suggest that X. laevis Dmrtl may be involved in maintaining GSC identity
in male primary spermatogonia throughout development, and in female primary oogonia before
metamorphosis, possibly by negatively or positively regulating apoptosis- and pluripotency-promoting
genes or GSC-maintaining genes, respectively. Dmrtl might also prevent entry into premeiotic
S-phase in secondary spermatogonia by regulating the stra8 expression in X. laevis, as it does in mice.
The absence of Dmit] from some secondary oogonia in X. laevis indicates that it does not function as
a meiotic regulator in these cells. The real-time PCR analysis revealed that the Dmrtl and stra8
mRNAs shared similar expression patterns during gonadal development (Fig. 1). Interestingly, stra8
was expressed in the ZW and ZZ gonads at stages 50 and 53, which have no premeiotic germ cells.
Although it is assumed that Stra8 function is limited to meiosis in germ cells in mammals, Stra8 might

play another role in gonadal development in X. [aevis.

The phosphorylation of H2AX, which generates YH2AX,, was originally identified as an early
event after ionizing radiation-induced DNA DSBs (Rogakou et al. 1998). Meiotic DNA DSBs may
also induce the generation of YH2AX. Here, I observed yH2AX expression not only in meiotic germ
cells but also in female and male primary GSCs during early sex differentiation (Fig. 5). yYH2AX was
recently reported to be expressed in mammalian embryonic stem cells (ESCs), induced pluripotent
stem cells, and neural stem cells (Banath et al. 2009; Fernando et al. 2011; Turinetto et al. 2012)
Turinetto and Giachino (Turinetto, Valentina 2015) suggested that YH2AX may contribute to the
creation of specific chromatin structures in response to other cellular signals besides DNA damage.
Thus, my results, in combination with previous findings, suggest that yYH2AX may play an important

role in maintaining stem cell identify by regulating epigenetic changes in various types of stem cells.

Recently, Nishimura et al. (Nishimura et al. 2015) reported that foxI3 shows specific
expression in female GSCs throughout development, which would determine female germ cell identity

for oocytes in the teleost fish medaka. My experiments revealed substantial differences in morphology
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and protein expression between female and male GSCs during gonadal development in X. laevis. 1
found that yH2AX was barely detectable in female GSCs after metamorphosis. I also observed that
primary oogonia become more condensed as ovarian development progressed, whereas primary
spermatogonia exhibited a similar morphology to the PGCs throughout testicular development (Fig. 2).
The tendency of male GSCs to maintain the PGC phenotype, compared with the phenotypic changes
exhibited by female GSCs, could involve epigenetic differences and/or differences in the ovarian and
testicular environments. It will be interesting to examine whether these sexual dimorphisms are
common in other vertebrate species. If these differences are conserved, they may represent a
mechanism for reducing ‘male-driven evolution’, which refers to the higher number of cell divisions
in the male germ line compared to the female germ line, and the higher prevalence of male germline
mutations (Miyata et al. 1987, Shimmin, Chang, and Li 1993). In mice, correlation been p33 and
Dmrtl is involved in cell fate and identity of male GSCs (Takashima et al. 2013b). Accordingly, there
might be stronger relationships between the DNA repair system and germ cell identity mediated
through p353-yH2AX and Dmirtl in males than in females in X. laevis. It will be intriguing to study
how the relationships could protect germ cells from mutations or whether they are conserved in

vertebrates.

For comprehending gonadal development including sex determination and differentiation in
X, laevis, 1 previously identified Dmrtl and its W-linked paralog Dm-W, and characterized the former
as a gene for testis formation and germ-cell development and the latter as a female sex-determining
gene (Yoshimoto et al. 2010), (Yoshimoto et al. 2008), (Mawaribuchi, Musashijima, et al. 2017),
(Fujitani et al. 2016), (Yoshimoto and Ito 2011), (Yoshimoto et al. 2006). 1 also reported molecular
evolution of the Dmrtl family genes (Mawaribuchi, Musashijima, et al. 2017), (Mawaribuchi et al.
2012), (Mawaribuchi, Takahashi, et al. 2017). However, it remains unknown how Dmrtl activates or
represses transcription of its target genes in gonadal somatic cells and germ cells as a transcription
factor. To understand the transcriptional machinery by Dmirtl, I tried to identify complex members
with Dmrtl in X. leavis. By analyzing immunoprecipitacs with the anti-Dmrt] monoclonal antibody
from extracts of adult testes, I selected three proteins, Phb2, Yb-1, and Prkra from more than one
hundred identified proteins.

Unexpectedly, a protein-protein binding assay in co-transfected 293T cells indicated that
each protein could not directly interact with Dmrtl (data not shown). The result suggested that each
protein might be indirectly associated with Dmrtl through other Dmrt1-binding proteins. Phb2 is an
intercellular communicator between nucleus and mitochondria, and suppresses transcription of target
genes in nuclei (Bavelloni et al. 2015). In contrast, a transcription factor Yb-1 is involved in
transcriptional machinery by interacting with other transcription factors including p33 (Okamoto et al.
2000). Unfortunately, exogenous expression of Phb2 or Yb-1 induced a few or no changes on

Dmrt1-driven luciferase reporter assay (Fig. 8). It is possible that transcription driven by Phb2 or Yb-1
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could be influenced by indirect interaction with Dmrtl.

In Dmrtl-driven luciferase reporter assay using transfected 293T cells, only Prkra enhanced
the luciferase activity (Fig. 8 and Fig. 9). Prkra was known to be involved in p33 function (Bennett et al.
2012). Importantly, p53 significantly repressed the enhanced activity by Prkra (Fig. 9), maybe
mediated through p33-Prkra and Dmirt1-Prkra interaction. 1 also found that p53 could moderately
attenuate the Dmrt1-driven activity in the absence of exogenous expression of Prkra. Because I could
not observe direct interaction between Dmrtl and p53 in co-transfected 293T cells (data not shown),
p53 might also indirectly participate in the Prkra-independent transcription by Dmrtl.

In what types of cells does Prkra enhance transcriptional activity by Dmrtl or p53 repress its
enhanced activity? What does the regulation by Prkra and/or p33 mean? In situ hybridization analysis
showed that Prkra was highly expressed in female and male germ stem cells (oogonia and
spematogonia) in tadpole gonads of X. leavis (Fig. 10B). This observation coincided with the
expression pattern during gonadal development in 7W and ZZ tadpoles and adults (Fig. 10A). In X
leavis germ stem cells, Dmrtl and a phosphorylated form of the histone variant H2AX (YH2AX) could
contribute to the maintenance of their stem cell identity and participate in genome protection against
double strand breaks, respectively (Fujitani et al. 2016). p53 has been described as "the guardian of the
genome", because it plays important roles in cell cycle regulation, DNA repair, and apoptosis, leading
to genome stability by preventing mutations or climinating DNA-damaged, mutated cells. For the next
generation, p53 functions to guarantee germ cell quality (Gebel et al. 2017). Takashima et al.
(Takashima et al. 2013a) reported that, in mouse spermatogonial stem cells, Dmrtl depletion causes
apoptosis, but both Dmrtl and p53 depletion induces pluripotency, suggesting that p53 and Dmrtl
might play contrary and/or related roles in spermatogonial stem cells. In other words, the balance
between Dmurtl and p53 might maintain germ stem cell identity. Taken together, these findings suggest
that Prkra might enhance Dmurtl function for germ stem cell identity, but p33 negatively controls
Dmrtl function, leading to apoptosis in damaged, mutated germ stem cells. In addition, Yb-1, one of
the three Dmrtl-interacting proteins identified in this study, could directly bind with p53 (Okamoto et
al. 2000), as described above. It is possible that germ stem cell identity regulated by Dmrtl and p53
might be mediated through not only Prkra, but also Yb-1.

Prkra has also been characterized as a dsRNA binding protein (Redfern et al. 2013) a RISC
(RNA-induced ~silencing complex) ~member required for subsequent siRNA-mediated
post-transcriptional gene silencing (Patel and Sen 1998), and an activator of protein kinase R (Pkr)
also known as interferon-induced, dsRNA-activated protein kinase (Huang, Hutchuns, and Patel 2002).
I cannot imagine how dsRNA/RISC is involved in Prkra-Dmrt] interaction. Interestingly, Pkr
associated with p33 (Cuddihy et al. 1999), and the Prkra-Pkr signaling in response to stress-inhibited
p53 turnover, leading to G1 cell cycle arrest (Bennett et al. 2012). Tt will be interesting to clarify
whether the two signaling modules, Prkra-Pkr-p53 and Dmrt1-Prkra-p33, have mutual relation in germ

stem cells.
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5. Future tasks

of Dmrt1’s function for germ stem cell (GSC) identity in Xenopus frogs

(1) Study
GSCs by ChIP-sequence using the anti

Identification for target g£enes of Dmrtl in

-Dmartl

antibody

Sexual dimorphism of GSCs mediate
1t1°s function as an activator or a repressor

ty in GSCs in Xenopus frogs

d through Dmrt1

Molecular mechanisms of Dm
Prkra-p53 for GSC identity and genome integri
-specific knockout individuals

(2) Study of Dmrtl
Prkra function by production of GSC
n by production of GSC-specific knockout individu

-Prkra-p33 in GSC identity and genome integrity

- p53 functio als

- Regulation by Dmrtl
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Real-time PCR analysis of dmrt] and stra8 in ZZ and ZW gonads during sexual development. gPCR was
performed for dmrtl (A) or stra8 (B) using cDNAs derived from the total RNAs of three ZZ or ZW gonads from
tadpoles at different stages of development and adult frogs. The dmurt1 or stra8 primer pairs were designed within
common sequences shared between the two dmirtl (dmrtl L and dmrt1.S) and two stra8 c¢DNAs in X. laevis. W,

weeks; Y, years.
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Fig.2

st. 56

St. 62

Distribution of Dmrt1 in ZZ and ZW gonads during tadpole development. Immunostaining with anti-Dmrt1 and
anti- VASA antibodies was performed on gonadal sections from ZW and ZZ tadpoles at stages 56 (A) and 62 (B).
Nuclei were stained with TOPRO-3. Oc. oocyte: Og, secondary oogonium; POg, primary oogonium; PSg,
primary spermatogonium; pSe, pre-Sertoli cell. White arrowheads and arrows indicate Dmrt1-expressing pre-
Sertoli cells and primary oogonia, respectively. Typical GSCs with somatic cells and their 2.59 magnification
images are shown in the dashed squares. A dashed polygon indicates a typical cyst consisting of secondary

oogonia.
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Fig.3
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o
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Distribution of Dmrt1 in the immature ovary and mature testis after metamorphosis. Immunostaining with anti-
Dmrtl and anti-VASA antibodies was performed using the immature ovary from a ZW frog 2 weeks after
metamorphosis (A) and the mature testis of an adult ZZ frog (B). Nuclei were stained with TOPRO-3. Oc,

Oocyte: POg, primary oogonium; PSg, primary spermatogonium; Se, Sertoli cell; Sg, secondary

spermatogonium: Sc, spermatocyte; St. spermatid. pSe, pre-Sertoli cell. Dmrtl- expressing primary oogonia and

their 59 magnification images are shown in the dashed squares. White arrows and arrowhead in (A) indicate

primary oogonia and diplotene oocytes, respectively. White arrowheads in (B) indicate Dmrt1- expressing

primary spermatogonium.



Fig.4

ZW (st. 62)

Adult testis

Scale bar: 20 um

BrdU incorporation and Dmrt] expression in the ZW developing ovary and ZZ adult testis. Immunostaining with
anti-Dmrt] and anti-BrdU antibodies was performed on the immature tadpole ovary at stage 62 and the mature
testis of an adult frog. Nuclei were stained with TOPRO-3. Og, secondary oogonium; POg, primary oogonium;

PSg, primary spermatogonium; Sg, secondary spermatogonium: Sc, spermatocyte.
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Fig.5
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Scale bar: 20 pm
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Distribution of ¥ H2AX in ZZ and ZW gonads during development. Immunostaining with anti-Dmrt1 and anti-
¥ H2AX antibodies was performed on gonadal sections from ZW and ZZ tadpoles at stages 53 and 62 (A) and
on gonadal sections from a ZZ adult frog (B). Nuclei were stained with TO-PRO. Oc, oocyte; POg, primary
oogonium; PSg, primary spermatogonium; Sg, secondary spermatogonium; Sc, spermatocyte. White arrowheads

and arrows indicate Dmrt1- or ¥ H2AX-positive primary GSCs and leptotene/zy gotene oocytes, respectively.
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Fig.6
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Immunoreaction of an anti-DMRT1 monoclonal antibody 4F6 against X. /aevis DMRT1. (A) Immunoblot
analysis using the anti-FLAG (M5) or anti-DMRT1 (4F6) monoclonal antibodies. pcDNA3-FLAG or
pcDNA3-FLAG-DMRT1 was transiently transfected into 293T cells. Extracts of 293T cells were examined by
immunoblotting with each antibody followed by a HRP conjugated anti-mouse IgG antibody. DMRT1 was
detected as a single band at the same size by both antibodies (arrowhead). (B) Imminoprecipitation (IP) analysis
with the anti-FLAG (M5) or anti-DMRT1 (4F6) monoclonal antibodies. pcDNA3-FLAG-DMRT1 was
transiently transfected into 293T cells. The cell lysate was mixed with each antibody and pulled down with
protein A/G agarose. IP extracts were examined by immunoblotting using the anti-DMRT1 polyclonal
antibody (Fujitani et al. 2016) followed by a HRP conjugated anti-rabbit IgG antibody. (C) Immunohistochemical
analysis using the anti-DMRT1 monoclonal antibody 4F6 (1/10) and anti-DMRT1 polyclonal antibodies
(1/1000) (Fujitani et al. 2016). A frozen section of adult testis was stained with Hoechst 33258 for nuclei, and
reacted with both the antibodies followed by Alexa 594-conmjugated anti-mouse (red) and Alexa 488

anti-rabbit-IgG (green) antibodies. Both signals show the same staining patterns.
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Fig.7

Silver staining of immunoprecipitates using the anti-DMRT1 monoclonal antibody 4F6 form X. /aevis adult
testes. Testis extracts were mixed with normal mouse IgG or the anti-DMRT1 antibody 4F6. and pulled down
with protein A/G agarose. The immunoprecipitates were examined by silver staining (the right and middle lanes)
or immunoblotted with an anti-DMRT1 polyclonal antibody (right lane). Seven 4F6-specific bands were excised,

and examined by LC-MS.
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Fig.8

Relative luciferase activity

Effects of PHB2, YB1 and PRKRA on transcriptional activity by DMRT1 using luciferase reporter assay. 150 ng
of DMRT1-driven firefly luciferase reporter plasmid (p4XDMRT1-luc), 10 ng of DMRT1 expression plasmid
(pcDNA3-FLAG-DMRT1), and 10 ng renilla luciferase vector (pPRL-TK-luc) as transfection internal control in
the presence or absence of PHB2, YB1 or PRKRA expression plasmids (pcDNA3-FLAG- PHB2, YBI or
PRKRA) were transiently co-transfected into 293T cells, using 1.2 pg PEI MAX. Total amount of DNA was kept
at 250 ng per each transfection with pcDNA3-FLAG empty vector. 24 hours after transfection, cell lysates were
used to measure luciferase activity. Relative activity is shown as the fold increase compared with the value
obtained with 250 ng of pcDNA3-FLAG empty vector. -, +, and ++ indicate 0, 3.3, and 20 ng, respectively.
Values are expressed as mean + SE, n = 3. The letters above the bars indicate results of Tukey HSD test

following one-way ANOVA (p <0.05).
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Fig.9

Relative luciferase activity

45.00
40.00
35.00
30.00
25.00
20.00
15.00
10.00

5.00

0.00

P < 0.05

DMRTL

PRKRA

p53

++

Effects of PRKRA and/or p53 on transcriptional activity by DMRT1 using luciferase reporter assay. 150 ng of

DMRT1-driven firefly Iuciferase reporter plasmid (p4xXDMRT1-luc), 3.3 ng of DMRT1 expression plasmid

(pcDNA3-FLAG-DMRT1), and 10 ng renilla luciferase vector (pRL-TK-luc) as transfection internal control in

the presence or absence of PRKRA and/or p53 expression plasmids (pcDNA3 -FLAG-PRKRA and/or -p53) were

transiently co-transfected into 293T cells, using 1.2 pg PEI MAX. Total amount of DNA was kept at 250 ng per

each transfection with pcDNA3-FLAG empty vector. 24 hours after transfection, cell lysates were used to

measure luciferase activity. Relative activity is shown as the fold increase compared with the value obtained with

250 ng of pcDNA3-FLAG empty vector. -, +, and ++ indicate 0, 3.3, and 20 ng, respectively. Values are

expressed as mean + SE, n = 3. The letters above the bars indicate results of Tukey HSD test following one-way

ANOVA (p < 0.05).
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Fig.10
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Expression of Pact mRNA in developing ZW and ZZ gonads. (A) Quantitative RT-PCR analysis of Prkra
mRNA during gonadal development of ZW (red) and ZZ (blue) tadpoles and adults in .X. /eavis. cDNAs were
synthesized using total RNAs from ZW and ZZ gonads at various stages of tadpoles after sex determination, and
at 6 weeks, 1 year, and 2 years of frogs after metamorphosis, and then amplified by PCR using specific primer
pairs as described in Table 1. W and Y show weeks and year(s), respectively. EFa was used for normalization.
RT-qPCR data represent the mean (n=3) and SD. Values are expressed as mean + SE, n = 3. Differences among
stages were evaluated by one-way ANOVA followed by the Tukey HSD test (p < 0.05). Mean values without
sharing the same letters are significantly different from each other. Sexual differences between ZZ and ZW
gonads at each stage were evaluated or by Student’s t-test (* p < 0.05). N.S., not significant. (B) Distribution of
Prkra mRNAs on transverse sections of ZW and ZZ tadpole gonads at stage 56. Whole-mount in situ
hybridization of the gonads with the attached mesonephros was performed with the Prkra sense or anti-sense
RNA probe, followed by 7-um sectioning transversely using a cryostat. The sections were treated with an
anti-VASA monoclonal antibody for germ cells (red) and Hoechst 33258 for nuclei (blue). Note that the nuclei
in germ cells were faintly stained by Hoechst 33258. Arrowheads indicate Prkra-expressing germ cells. Scale

bars, 20pm.
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