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Chapter 1 A pathological study of the salivary glands of rabid dogs in the Philippines 

 

Introduction 

 

 Rabies virus is a highly neurotropic virus that affects the nervous system in humans and 

animals [14]. Rabies is as endemic disease in many the developing and developed countries 

worldwide and causes approximately 37,000-86,000 human deaths each year [36]. In endemic 

countries, domestic dogs remain principal reservoir and vector for rabies virus infection and 

play an important role in transmission of rabies virus to human [2, 24]. In addition, more than 

98% of human rabies deaths in the Philippines are associated with dog bites [8]. Viral 

transmission is achieved through contact with the virus contained in the saliva of an infected 

animal, often through biting. After deep biting by an infected animal, the rabies virus binds to 

the nicotinic acetylcholine receptors at the neuromuscular junction in the muscle fibers [21]. 

The virus enters through the peripheral nerve and reaches the central nervous system (CNS) by 

centripetal spread. The rabies virus then spreads to peripheral non-nervous tissues, including 

salivary glands, adrenal glands, gastrointestinal tract, pancreas and heart [7, 12, 16, 32]. 

 The salivary glands are an important site of viral replication and portals of exit for the 

rabies virus into saliva [14]. A previous study found that dogs have the ability to excrete virus 

particles into the saliva for up to 14 days before any clinical symptoms of rabies are apparent 

[10]. Moreover, saliva samples can be used as alternatives to brain [18] and cerebrospinal fluid 

[28] samples for ante-mortem diagnosis of canine rabies. The acinar epithelium of salivary 

gland has been shown contain abundant rabies virus antigens in infected animals [3, 6, 10]. 

However, detailed pathological findings in salivary glands and analysis of the excretion 

mechanism have not been reported. 
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Therefore, in this chapter, I investigated the histopathological and immunohistological 

finding of the salivary glands of rabid dogs and evaluated the excretion mechanism of the virus 

into the oral cavity, following a careful initial examination of the normal histological structure 

of dog salivary glands. 
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Materials and methods 

Animals and direct fluorescence antibody test (dFAT) 

 Mandibular and parotid glands samples were obtained from 22 rabid dogs, which had been 

submitted to the Research Institute of Tropical Medicine (RITM), Philippines for postmortem 

diagnosis of rabies. Small transverse sections (2-3 mm in thickness) of ammon’s horn and medulla 

were cut and slide was touched against the surface of the section and then placed on cold acetone 

overnight for fixing. After fixation, slides were air dried at room temperature. Then 450 μl of 

fluorescence isothiocyanate conjugate anti-rabies monoclonal antibody (Fujirebio®, Malvern, 

Pennsylvania) was added. The slides were incubated for 30 minutes at 37°C in a high humidity 

chamber. Slides were then dipped rinsed for 20 to 25 times in PBS twice followed by distilled 

water for further washing. Small amounts of the mounting, 20% glycerol-Tris buffered saline pH 

9.0, was placed on the slides before covering with coverslips for examination. The slides were 

examined under the fluorescent microscope (Nikon eclipse 80i). 

Histopathological examination 

 Mandibular and parotid salivary glands of rabid (n=22) and control (n=3) dogs were 

fixed in 10% neutral buffered formalin at room temperature for more than 72 hour, embedded in 

paraffin, sectioned (3 μm thickness), and mounted. Three rabies-vaccinated domestic Japanese 

mixed dogs (8 to 10 years old) were used as a control group. The sections were then subjected 

to hematoxylin and eosin, special straining (Alcian blue stain, reticulin silver impregnation) and 

immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine 

triphosphate (dUTP) nick end labeling (TUNEL) assay as described below. 

Staining with hematoxylin and eosin (HE) 

The sections were stained with hematoxylin and eosin for general histopathological 

examination. 
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Protocol 

 Paraffin was removed from the sections by a series of xylene and ethanol rinses. Tissue 

sections were rinsed in distilled water for 5 minutes and stained with hematoxylin solution 

(Certistain®, Darmstadt, Germany) for 3 minutes, rinsed in running tap water for 5 minutes and 

stained with eosin solution (Sakura Finetek Japan Co.,Ltd., Tokyo, Japan) for 5 minutes, rinsed 

in distilled water for three times and dehydrated through a series of ethanol and xylene. The 

sections were then mounted in microscopy mounting medium. 

Staining with Alcian blue (pH 2.5) 

 Alcian blue stain used for the demonstration of acid mucosubstances of mucous acinar 

epithelial cells. 

Protocol 

 Paraffin was removed from the sections by a series of xylene and ethanol rinses.  Sections 

were rinsed in distilled water for 5 minutes, and then sections were immersed in 3% acetic acid 

solution for 5 minutes, followed by immerse with Alcian blue solution (pH 2.5; Certistain®, 

Darmstadt, Germany) for 30 minutes at room temperature, washed in 3% acetic acid solution for 

5 times once again, and rinsed in distilled water for 5 minutes. Sections were counterstained 

with Nuclear-fast red solution (TCI Co., Ltd., Tokyo Kasei, Japan) for 1 minute at room 

temperature, rinsed in distilled water for 1 minute and dehydrated through a series of ethanol 

and xylene. Sections were mounted in microscopy mounting medium. 

Staining with reticulin silver impregnation 

 Reticulin silver impregnation stain used for the demonstration of specific basement 

membrane of the cell. 
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Protocol 

 Paraffin was removed from the sections by a series of xylene and ethanol rinses.  Sections 

were rinsed in distilled water for 5 minutes, and then sections were immersed in 0.25% 

potassium permanganate for 5 minutes, washed in running tab water for 5 minutes, followed by 

immerse with 2% oxalic acid dihydrate solution for 2 minutes, washed in distilled water for 5 

minutes, then sections were immersed in 2% ferric ammonium sulfate solution for 1 minute, 

washed in distilled water for 5 minutes, then sections were immerse in ammonium silver 

solution for 10 minute, rinsed in 100% ethanol for 1 time, followed by immerse with 1% 

formalin solution for 1 minute, washed in distilled water for 5 minutes, then sections were 

immerse in 0.2% silver chloride solution for 10 minutes, washed in distilled water for 5 minutes, 

then sections were immersed in 2% oxalic acid dihydrate solution for 2 minutes once again, 

washed in distilled water for 5 minutes, and then sections were immersed in 5% sodium 

thiosulfate solution for 2 minutes, followed by washed in distilled water for 5 minutes, and 

dehydrated through a series of ethanol and xylene. Sections were mounted in microscopy 

mounting medium.  

Immunohistochemistry 

1. For detection of the rabies virus antigens in tissues  

The sections were stained using the streptavidin-biotin-peroxidase complex method with 

rabbit anti-phosphoprotein (P) antibodies. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated for the activation of antigen with 

0.25% trypsin at room temperature for 30 minutes. After this treatment, sections were washed 
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three times for 5 minutes in distilled water. After washing, to removed endogenous peroxidase 

activity the sections were immersed with 0.3% H2O2 in methanol for 60 minutes; then they were 

washed three times for 5 minutes in distilled water once again. The sections were treated with 

10% normal goat serum (Nichirei Biosciences, Tokyo, Japan) for 60 minutes to block non-

specific reaction. Sections were then incubated with primary antibody for overnight at 4°C in a 

humidified chamber. Primary antibody was diluted 1:1200. After incubation with primary 

antibody, sections were washed three times for 5 minutes in phosphate buffer saline (PBS, pH 

7.4) and incubated for 30 minutes at room temperature with the biotinylated anti-rabbit IgG 

(Nichirei Biosciences) as a secondary antibody. Sections were again washed three times for 5 

minutes in PBS; then incubated for 30 minutes in room temperature with peroxidase-

streptavidin enzyme (Nichirei Biosciences) for 30 minutes, washed in PBS three times for 5 

minutes. Finally, sections were visualized using 3-3’-diaminobenzidine tetrachloride substrate 

(DAB substrate; DAKO, Kyoto, Japan), followed by rinsing in distilled water. The sections 

were counterstained with hematoxylin, and rinsing in running tap water again for 5 minutes. The 

sections were then dehydrated and mounted in microscopy mounting medium. Negative control 

was processed with rabbit serum instead of primary antibody. 

2. For detection of T lymphocytes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD3 antibodies (DAKO, Kyoto, Japan) for detection of T lymphocytes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences, Japan) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 



7 

 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 60 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

Primary antibody was diluted 1:50. After incubation with the primary antibody, sections were 

rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 

temperature with the Envision + System Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in 

PBS (three changes, 5 minutes each) once again. Finally, sections were visualized using DAB 

substrate, followed by rinsing in distilled water. The sections were counterstained with 

hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium. 

3. For detection of B lymphocytes and plasma cells 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD20 antibodies (Spring Bioscience, Fremont, USA) for detection of B 

lymphocytes, and anti-CD79α antibodies (DAKO, Kyoto, Japan) for detection of plasma cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 
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After incubation with the primary antibody, sections were rinsed in PBS (three changes, 5 

minutes each), then incubated for 30 minutes at room temperature with the Envision + System 

Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in PBS (three changes, 5 minutes each) once 

again. Finally, sections were visualized using DAB substrate, followed by rinsing in distilled 

water. The sections were counterstained with hematoxylin, and rinsing in running tap water 

again for 5 minutes. The sections were then dehydrated and mounted in microscopy mounting 

medium. 

4. For detection of myoepithelial cells 

The sections were stained using the polymer-based immunohistochemical method with 

the monoclonal mouse anti-alpha-smooth muscle actin antibodies (α-SMA, DAKO, Kyoto, 

Japan) for detection of myoepithelial cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences) for activation of antigens by autoclaving at 121°C for 15 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 15 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

Primary antibody was diluted 1:1000). After incubation with the primary antibody, sections 

were rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 

temperature with the Histofine® Simple Stain MAX-PO (Mouse) (Nichirei Biosciences), rinsed 

in PBS (three changes, 5 minutes each) once again. Finally, sections were visualized using DAB 



9 

 

substrate, followed by rinsing in distilled water. The sections were counterstained with 

hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium. 

5. For detection of basement membranes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-laminin antibodies (Thermo Scientific, USA) for detection of basement 

membranes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with proteolytic enzyme solution diluted in 0.05 mol/L Tris-HCL, 0.015 mol/L sodium 

azide, pH 7.5 (Proteinase-K, DAKO, Kyoto, Japan) at room temperature for 15 minutes; then 

they were rinsed in distilled water with three changes of 5 minutes each. Incubation for 15 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

Primary antibody was diluted 1:100. After incubation with the primary antibody, sections were 

rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 

temperature with the Envision + System Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in 

PBS (three changes, 5 minutes each) once again. Finally, sections were visualized using DAB 

substrate, followed by rinsing in distilled water. The sections were counterstained with 

hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium. 
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6. For detection of nerve fibers 

The sections were stained using the polymer-based immunohistochemical method with 

monoclonal mouse anti-neurofilament protein antibodies (NF, DAKO, Kyoto, Japan) for 

detection of nerve fibers. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with Proteinase-K at room temperature for 30 minutes; then they were rinsed in 

distilled water with three changes of 5 minutes each. Incubation for 10 minutes in 3% H2O2 in 

methanol to removed endogenous peroxidase activity, and the sections were rinsed in distilled 

water (three changes, 5 minutes each), followed by incubation with the primary antibody for 

overnight at 4°C in a humidified chamber. Primary antibody was diluted 1:100. After incubation 

with the primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), then 

incubated for 30 minutes at room temperature with the Histofine® Simple Stain MAX-PO 

(Mouse) (Nichirei Biosciences) rinsed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 

7. For detection of nerve cells 

The sections were stained using the polymer-based immunohistochemical method with 

monoclonal mouse anti-neuron specific enolase antibodies (NSE, DAKO, Kyoto, Japan) for 

detection of nerve cells. 

Protocol 
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 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences) for activation of antigens by autoclaving at 121°C for 15 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 10 minutes, 

followed by incubation with the primary antibody for 60 minutes at room temperature. Primary 

antibody was diluted 1:100. After incubation with the primary antibody, sections were rinsed in 

PBS (three changes, 5 minutes each), then incubated for 30 minutes at room temperature with 

the Envision + System Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in PBS (three 

changes, 5 minutes each) once again. Finally, sections were visualized using DAB substrate, 

followed by rinsing in distilled water. The sections were counterstained with hematoxylin, and 

rinsing in running tap water again for 5 minutes. The sections were then dehydrated and 

mounted in microscopy mounting medium. 

8. For detection of apoptotic cells 

The sections were stained using the polymer-based immunohistochemical method with 

anti-activated cysteine aspartic acid specific protease (cleaved caspase-3) antibodies for 

detection of apoptotic cells (Cell Signaling Technology, Inc., Beverley, MA, USA). 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, 

and washed twice with distilled water. The sections were treated with Histofine® pH 9.0 

(Nichirei Biosciences) for activation of antigens by heating in a water bath at 95°C for 15 

minutes; then were washed in distilled water with three changes of 5 minutes each. After 
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washing, incubation for 15 minutes in 3% H2O2 in methanol to removed endogenous peroxidase 

activity, and the sections were rinsed in distilled water (three changes, 5 minutes each). To 

block non-specific reaction, the sections were treated with 10% normal goat serum (Nichirei 

Biosciences) for 60 minutes, followed by incubation with the primary antibody for overnight at 

4°C in a humidified chamber. Primary antibody was diluted 1:50. After incubation with the 

primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), then incubated 

for 30 minutes at room temperature with the Envision + System Labelled Polymer-HRP anti-

rabbit (DAKO), rinsed in PBS (three changes, 5 minutes each); followed by incubated for 30 

minutes at room temperature with peroxidase-streptavidin enzyme, washed in PBS three times 

for 5 minutes once again. Finally, sections were visualized using DAB substrate, followed by 

rinsing in distilled water. The sections were counterstained with hematoxylin, and rinsing in 

running tap water again for 5 minutes. The sections were then dehydrated and mounted in 

microscopy mounting medium. 

9. Double immunostaining and immunostaining with a special stain 

Double staining of a single tissue section was used for identification of cell type and co-

expression of antigens. 

Protocol 

 Staining for α-SMA was performed as described above, and slides were incubated with 

DAB until color developed. The reaction was then stopped by washing in distilled water, and 

anti-P antibodies were added. Histofine Simple stain AP (Nichirei Biosciences) was used as a 

secondary antibody. A color reaction was developed with Histofine New Fuchsin (Nichirei 

Biosciences). The slides were counterstained with hematoxylin. For immunostaining 

combination with special stain, anti-P antibody staining was performed as described above, and 

slides were incubated with DAB substrate until color developed. The reaction was stopped by 
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washing the slides in distilled water, and the slides were then incubated in 3% acetic acid for 5 

minutes, followed by staining with Alcian blue solution for 30 minutes. Slides were then 

washed in distilled water for 5 minutes, stained with Nuclear-fast red for 1 minute, washed in 

distilled water for 5 minutes, and mounted for light microscopy. 

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end 

labeling (TUNEL) assay 

The sections were evaluated using TUNEL assay kit (ApopTag® Plug peroxidase In Situ 

Apoptosis Detection Kit, Millipore Corporation, Billerica, MA, USA) for detection of 

fragmented DNA of apoptotic cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, sections were treated with Proteinase-K 

(DAKO) for 15 minutes at room temperature to activated antigens, rinsed in PBS (three changes, 

5 minutes each). Then, endogenous peroxidase activity was removed with 0.3% H2O2 in 

methanol for 15 minutes at room temperature, rinsed in PBS (three changes, 5 minutes each). 

After washing in PBS, sections were covered with 50 μl of the TUNEL reaction mixture, which 

containing terminal deoxynucleotidyl transferase (TdT) and fluorescein-dUTP, and incubated 

under a coverslip in a humidified chamber for 60 minutes at 37°C. The reaction was stopped by 

washing sections in PBS. Sections were then incubated with anti-digoxigenin peroxidase for 30 

minutes at room temperature. Then, washed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 
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Results 

Clinical characteristics of the dogs 

 Eighteen dogs were discovered after having died, while four dogs were subjected to 

euthanasia. The 22 dogs (11 male, 8 female, and 3 of unknown sex) ranged in age from 1 to 

more than 24 months, with six dogs having unknown ages. Sixteen of the 22 dogs had no 

history of rabies vaccination, one dog had a history of rabies vaccination, and no information on 

rabies vaccination status was available for five dogs. Sixteen dogs were free-roaming dogs with 

owners, three were strays, two were confined with household contact, and one had unknown 

living conditions. The primary clinical symptoms of canine rabies infection, such as unprovoked 

aggressiveness, mad biting of inanimate objects, aimless running, and excessive salivation, were 

observed in 18 of the 22 dogs. All brain specimens were diagnosed as positive for rabies virus 

antigen through the direct immunofluorescence antibody test (dFAT). The clinical information 

and results of dFAT are summarized in the Table 1. 

Gross and histological findings of salivary glands in control dogs 

 No gross findings were observed in the parotid glands, mandibular glands, and 

mandibular lymph nodes in control dogs (Fig. 1). The mandibular glands were divided into 

several lobules by dense connective tissue septa and were composed of serous and mucous 

acinar epithelium. Many ganglion cells and peripheral nerve fibers were observed in the 

interlobular septa (Fig. 2). The parotid gland was composed exclusively of serous acinar 

epithelium in association with striated ducts and interlobular excretory ducts, but interlobular 

ganglion cells were not found (Fig 3). 
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Histopathological findings of salivary glands of rabid dogs 

 In the mandibular glands, 19 out of 22 rabid dogs exhibited mild to moderate non-

suppurative sialadenitis characterized by fragmentation and cytolysis of the acinar epithelium 

with infiltration of moderate to marked lymphocytes and plasma cells (Figs. 4-7). These cells 

consistently surrounded fragmented acini, interstitial connective tissue, and striated ducts. 

Infiltration of inflammatory cells was not found in three of the four euthanized dogs, but small 

foci of necrotic acinar cells were scattered throughout the samples (Fig. 8). In all cases, no 

histological changes in striated and interlobular ductal epithelial cells and interlobular ganglion 

cells were found. In the parotid glands, no morphological evidence of acinar, duct units, and 

interlobular stroma was observed (Fig. 9). 

Immunohistochemical examination of the mandibular glands and parotid glands 

Detection of rabies virus antigen by anti-P antibodies 

No viral antigen was detected in control dogs (data not shown). In all rabid dogs, viral 

antigens were detected in the cytoplasm of the mucous acinar epithelium and interlobular 

ganglion cells in the mandibular glands (Figs. 10-12). Some viral antigens were observed in the 

myoepithelium and peripheral nerves, but viral antigens were not found in the striated and 

interlobular ductal epithelia. In parotid gland, rabies virus antigens were only detected in the 

interlobular peripheral nerves (Figs. 13, 14). These immunohistochemistry results are 

summarized in Table 2. 

Detection of lymphocytes by anti-CD3, anti-CD20, and anti-CD79α antibodies 

 In mandibular glands of rabid dogs, there are moderate numbers of anti-CD3 positive 

cells appeared in the interstitial connective tissue and around fragmented acinar epithelium (Fig. 

15), while anti-CD20 (Figs. 16, 17) and anti-CD79α (Fig. 18) positive cells were mainly 
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detected in the interstitial connective tissue and periductal areas. No positive cells were detected 

in the parotid glands. 

Detection of basement membranes by anti-laminin antibodies and reticulin silver impregnation 

staining 

 In control dogs, laminin immunoreactivity and reticulin silver impregnation staining 

appeared as linear, continuous staining around individual acini and ducts of the parotid and 

mandibular glands (Fig. 19). In the mandibular glands of rabid dogs, staining was irregular and 

weak because acinar epithelium and basement membranes were disrupted (Figs. 20, 21).  

Detection of myoepithelial cells by anti-α-SMA antibodies 

 In control dogs, anti-α-SMA antibody was positive in the myoepithelial cells surrounding 

acinar epithelium (Fig. 22) and intercalated duct epithelium of the mandibular and parotid 

glands. However, in rabid dogs, the intensity of immunostaining of anti-α-SMA-positive cells 

was decreased in glands that showed severe inflammation (Fig. 23). 

Detection of apoptotic cells by TUNEL assays and anti-cleaved caspase-3 antibodies 

 In mandibular glands of rabid dogs, the acinar epithelium and lymphocytes exhibited 

apoptotic features, such as nuclear fragmentation and cytolysis, were positive in TUNEL assays 

(Figs. 24, 25). The numbers of TUNEL-positive cells were higher in the glands that showed 

severe inflammation. However, TUNEL-positive signals were not detected in the ductal 

epithelium, interlobular ganglion cells, and serous demilune. In parotid glands, the acinar 

epithelium and the ductal epithelium were negative for TUNEL staining (Fig. 26). The patterns 

of anti-cleaved caspase-3 immunostaning were similar to those of TUNEL staining in the 

mandibular glands, but with fewer positive cells (Fig. 27). 
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Detection of nervous tissues by anti-NF and anti-NSE antibodies 

 Interlobular ganglion cells and peripheral nerve fibers were positive for anti-NSE 

antibodies in the mandibular glands (Figs. 28, 29). Interlobular ganglion cells were not found in 

the parotid glands (Fig. 30). Anti-NF immunoreactivity was observed as a fine network in the 

fibers distributed throughout the stroma and around acini in the mandibular glands (Fig. 31). 

The staining patterns were same between control and rabid dogs. 

Identification of the virus infected cells by combination of anti-P antibody and either anti-α-

SMA or Alcian blue staining 

 In the mandibular gland of rabid dogs, anti-α-SMA-positive myoepithelial cells showed 

co-expression with anti-P antibody reactivity (Fig. 32). In addition, the mucous acinar 

epithelium showed co-stained with anti-P antibody reactivity and Alcian blue staining (Fig. 33). 

In contrast, anti-α-SMA-positive myoepithelial cells of the parotid glands were negative for 

anti-P antibody reactivity. 
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Discussion 

 Centrifugal spread from the CNS to peripheral sites along neuronal routes is essential for 

transmission of rabies virus to its natural hosts. Salivary gland infection is necessary for the 

transfer of infections oral fluids by rabid vectors. In this study, non-suppurative sialadenitis, 

characterized by fragmentation, cytolysis of acinar epithelium, basement membrane disruption, 

and lymphoplasmacytic infiltration, was observed in the mandibular glands of most rabid dogs. 

No inflammatory cells were found in three of four euthanized dogs; however, small foci of 

necrotic acinar cells were scattered throughout the samples, and these cells were positive for 

anti-caspase-3 and TUNEL staining. These pathological findings suggested that early 

sialadenitis was induced by direct disruption of the acinar epithelium by rabies virus infection. 

 In this chapter, the viral antigen was mainly detected in the mucous acinar epithelium and 

myoepithelium in the mandibular glands. These findings are consistent with previous reports of 

skunks and foxes infected with the street rabies virus [1]. In addition, the viral antigen was 

present in the myoepithelium between the basal lamina and acinar epithelial cells. Thus, the 

rabies virus may propagate in the myoepithelium and affect nerve terminal innervation. 

Previous studies have described the morphological structure of neuro-effector that innervates 

the acinar epithelium and myoepithelium of the salivary glands of carnivores [11, 20, 27]. These 

neuro-effectors may be the hypolemmal type (i.e., non-myelinated axons that penetrate below 

the acinar basement membrane and adjacent to the myoepithelium) or the epilemmal type (i.e., 

non-myelinated axons found outside the acinar epithelium and myoepithelium). Furthermore, 

the intra-acinar nerve endings in the mandibular glands are restrictively localized only in the 

intercellular space between myoepithelial cells and mucous acinar cells, whereas no intra-acinar 

nerve endings occur among the serous cells [17]. Therefore, it was suggested the rabies virus 

may directly enter mucous acinar epithelial cells and myoepithelial cells via both innervation. 

However, several mammalian species lack apparent hypolemmal innervation in the striated 
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ducts and interlobular excretory ducts [31, 32]. In the present study, I did not observe 

degeneration, inflammation, or viral antigen in the duct unit of striated and interlobular ducts in 

the mandibular gland, suggesting that hypolemmal and epilemmal innervation were not present 

in the duct system of dogs. Thus, viral proliferation and cytotoxicity could not occur there, 

ensuring that secretions containing the virus were efficiently excreted into the oral cavity. 

 Interlobular ganglions were observed in the interlobular septa of the mandibular glands, 

similar to findings in humans [34] and rats [24]. These ganglions included a number of 

cholinergic neurons that received motor impulses form pre- and postganglionic parasympathetic 

fibers carried by the facial nerve [9]. Ganglion neurons are responsible for innervation of the 

salivary parenchyma and for regulation of saliva secretion [24, 26]. In the present study, viral 

antigens were detected in the ganglion neurons and their fibers. Thus, centrifugal viral 

propagation progresses to the mandibular glands via motor innervations. After the rabies virus 

replicates within the facial nerve nuclei, located in the ventral part of the rostral medulla 

oblongata, the virus then descends along the facial nerve to reach the submandibular ganglion 

and the interlobular ganglions [3, 30, 35]. In this study, I did not observe interlobular ganglia in 

the parotid gland and also no viral antigens detected here. Therefore, it was suggested that these 

ganglia are important for viral replication and serve as a main source of virus to acinar 

epithelium of the mandibular glands. 

 In the present study, virus-infected ganglion neurons were negative for TUNEL staining 

and cleaved caspase-3, indicating that virus-infected neurons did not undergo apoptosis, similar 

to results reported in natural infection of dogs and humans by a street rabies virus strain [15, 30]. 

Therefore, I concluded that lack of neuronal apoptosis in rabies in dogs infected by street rabies 

virus may promote prolonged infection within ganglion neurons and continually supply virus to 

the saliva acinar epithelium. On the other hand, virus-infected mucous acinar epithelial cells 

exhibited fragmentation and cytolysis, and migrating T lymphocytes were positive for TUNEL 
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and cleaved caspase-3, suggesting that rabies virus may trigger apoptotic cascades through the 

Fas/Fas ligand and caspase-dependent apoptotic pathway [29]. 

 In the present study, the inflammatory cells were composed mainly CD3, CD20, and 

CD79α-positive lymphocytes and were present in the virus-infected mandibular glands. These 

findings suggested that a combination of cell-mediated and humoral immune responses was 

important for the clearance of rabies virus from the salivary gland and that the inflammatory 

cytokines released by T lymphocytes activated plasma cell infiltration. CD79α is a surface 

marker of B lymphocytes and plasma cells. B lymphocytes play an important role in producing 

virus-neutralizing antibodies and are critical for control of rabies virus replication and essential 

in the clearance rabies virus from the CNS [13]. In addition, high titers of tissue-neutralizing 

antibody suppress viral spread to salivary epithelial cells [4]. The plasma cells in the salivary 

tissue are the source of locally produced antibodies, such as immunoglobulin A (IgA), which 

provides mucosal surface immunity against various antigens and neutralizes viruses [5, 22]. 

Furthermore, IgA-producing plasma cells infiltrate the salivary gland via regulation of T 

lymphocytes and various inflammatory cytokines, such as interleukin (IL)-5 and interferon 

(IFN)-α [23]. In the present study, however, the direct roles of lymphocytes in the salivary gland 

of rabid dogs remains unresolved because most of present cases were discovered after died, 

therefore, further studies are required. 

 In summary, our results confirmed the path through which the rabies virus descends along 

the facial nerve after proliferation in the brain to reach the ganglion neurons of the mandibular 

gland, subsequently traveling to the acinar epithelium and salivary gland myoepithelium. 

Furthermore, viral proliferation and cytotoxicity did not occur in the duct system, ensuring that 

secretions containing the virus were efficiently excreted into the oral cavity. 
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Table 1. Clinical information and laboratory findings of rabid dogs (samples obtained postmortem) 

No. Age (months) Sex Owned Manner of death Vaccination Animal conditions Neurological symptoms dFAT 

1 48 Male Yes Found dead No Free-roaming and owned Unprovoked aggressiveness, excessive salivation + 

2 Unknown Male Yes Euthanasia Unknown Stray 
Unprovoked aggressiveness, mad biting of 

inanimate objects 
+ 

3 24 Female Yes Found dead Yes Free-roaming and owned 
Excessive salivation, mad biting of inanimate 

objects, watchful look, paralysis 
+ 

4 1 Male Yes Found dead No Free-roaming and owned Unknown + 

5 6 Male Yes Found dead No Free-roaming and owned 
Unprovoked aggressiveness, mad biting of 

inanimate objects 
+ 

6 6 Male Yes Found dead No Free-roaming and owned Unknown + 

7 1 Male Yes Found dead No Free-roaming and owned Unprovoked aggressiveness + 

8 60 Male Yes Found dead No 
Confined with 

household contact 

Unprovoked aggressiveness, excessive salivation, 

apprehension, watchful look, mad biting of 

inanimate objects 

+ 

9 2 Female Yes Found dead No Free-roaming and owned 
Unprovoked aggressiveness, mad biting of 

inanimate objects, aimless running 
+ 

10 12 Female Yes Found dead No Free-roaming and owned Unknown + 

11 1 Female Yes Found dead No Unknown Unknown + 

12 36 Male Yes Found dead No Free-roaming and owned 
Unprovoked aggressiveness, mad biting of 

inanimate objects, paralysis of jaw and tongue 
+ 

13 16 Female Unknown Found dead No Free-roaming and owned Unprovoked aggressiveness + 

14 Unknown Unknown Unknown Euthanasia Unknown Stray Unprovoked aggressiveness + 

15 2 Male Unknown Found dead Unknown Free-roaming and owned Apprehensive, watchful look, paralysis + 

16 Unknown Unknown Unknown Found dead No Free-roaming and owned Unprovoked aggressiveness + 

17 2 Female Unknown Found dead No Free-roaming and owned Unprovoked aggressiveness + 

18 8 Female Unknown Found dead No Free-roaming and owned 
Unprovoked aggressiveness, mad biting of 

inanimate objects 
+ 

19 Unknown Male Unknown Euthanasia Unknown Free-roaming and owned Unprovoked aggressiveness + 

20 Unknown Male Unknown Found dead No Free-roaming and owned Unprovoked aggressiveness, aimless running + 

21 Unknown Unknown Unknown Euthanasia Unknown Stray Unprovoked aggressiveness + 

22 3 Female Unknown Found dead No 
Confined with 

household contact 

Unprovoked aggressiveness, mad biting of 

inanimate objects, aimless running 
+ 

+: positive, dFAT: direct fluorescent antibody test 
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Table 2. Summary of inflammatory cells infiltration and distribution of viral antigen in the mandibular glands of 22 rabid dogs 

No Inflammatory cells 

Virus antigen distribution 

Mucous epithelium Serous epithelium 
Ductal units (striated and 

interlobular duct) 
Interlobular ganglion 

1 Moderate + - - + 

2 Mild + - - + 

3 Mild + - - + 

4 Moderate + - - + 

5 Mild + - - + 

6 Mild + - - + 

7 Moderate + - - + 

8 Moderate + - - + 

9 Moderate + - - + 

10 Mild + - - + 

11 None + + - + 

12 Mild + - - + 

13 Moderate + - - + 

14 None + - - + 

15 Mild + - - + 

16 Moderate + - - + 

17 Mild + - - + 

18 Moderate + - - + 

19 Moderate + - - + 

20 Mild + - - + 

21 None + - - + 

22 Moderate + - - + 

+: positive, -: negative 
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Figure legends 

Fig. 1. Cutting position of the right external ear (E), parotid gland (PG), mandibular gland (MG), 

and mandibular lymph node (LN) after formalin fixation in a control dog. 

Fig. 2. Mandibular gland. The mandibular gland is composed of mixed components of mucous 

and serous acinar cells (A). The positions of the interlobular duct (D), ganglion cells (arrows), 

and vessels (V) are indicated in the stroma. 

Fig. 3. Parotid gland. The parotid gland is composed of the serous acinar gland (A) and 

interlobular stroma. The positions of the interlobular duct (D), peripheral nerve bundles (arrow), 

and vessels are indicated in the interlobular stroma. 

Figs. 4-6. Mandibular gland. In rabid dogs, non-suppurative sialadenitis characterized by 

cytolysis of acinar epithelium and infiltration of lymphoplasmacytic cells (asterisks). The 

striated ducts are intact (arrows). 

Fig. 7. Mandibular gland. No histological changes were observed in the interlobular ganglia 

(arrows), vessel (V) and interlobular duct (D). 

Fig. 8. Mandibular gland. Necrotic foci of the acinar epithelium (arrow heads) without 

inflammatory cells were observed in the euthanasia case. 

Fig. 9. Parotid gland. No pathological findings were observed in the serous acinar epithelium or 

striated ducts (D). 

Fig. 10. Mandibular gland. Viral antigens were detected by immunohistochemistry with anti-P 

antibody in the acinar epithelium (A) and ganglion cells (arrow), but the interlobular duct (D) 

and blood vessels (V) were negative. 
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Fig. 11. Mandibular gland. High magnification of Fig. 10. Viral antigens were detected by 

immunohistochemistry with anti-P antibodies in the cytoplasm of mucous acinar cells (asterisk). 

In contrast, serous cells of the demilume (arrows) and striated duct (D) were negative. 

Fig. 12. Mandibular gland. Higher magnification of Fig. 10. Viral antigens were detected by 

immunohistochemistry with anti-P antibodies in the ganglion cells and peripheral nerves. 

Figs. 13-14. Parotid gland. Viral antigens were detected only in the interlobular nerve fibers 

(13), but acinar epithelium (A) and ductal units (D) were negative (14). 

Fig. 15. Mandibular gland. Many of anti-CD3 positive cells were observed in the interstitial 

connective tissue and surrounding acinar epithelium (asterisks). 

Figs. 16-17. Mandibular glands. Many of anti-CD20 positive cells were observed surrounding 

ductal epithelium (D). 

Fig. 18. Mandibular gland. Many of anti-CD79α positive cells were observed in the interstitial 

connective tissue. 

Figs. 19-20. Mandibular gland. In control dog, anti-laminin immunostaining appeared as linear, 

continuous staining around individual acini and ducts (19), whereas the intensity of 

immunostaining decreased and irregular because acinar epithelium and basement membranes 

were disrupted in rabid dogs (20).  

Fig. 21. Mandibular gland. Reticulin silver impregnation staining revealed irregular positive 

reactions, with disruption of acinar epithelium (asterisk) and basement membranes. Special 

staining. 
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Figs. 22-23. Mandibular gland. In control dog, myoepithelial cells surrounding acinar 

epithelium showed strong reactivity for anti-α-SMA (22), whereas the intensity of 

immunostaining decreased in rabid dogs (asterisk, 23). 

Figs. 24-25. Mandibular gland. Necrotic foci (asterisks) in the acinar epithelium were TUNEL 

staining positive (arrows). 

Fig. 26. Parotid gland. The acinar epithelium and ductal units were negative for TUNEL 

staining. 

Fig. 27. Mandibular gland. Necrotic foci (asterisk) in the acinar epithelium were anti-caspase-3 

antibodies positive (arrow). 

Figs 28-29. Mandibular gland. In control dog, Interlobular ganglion cells and peripheral nerve 

fibers (29) were positive for anti-NSE antibodies. Interlobular ducts (D) and acinar epithelium 

(A). 

Fig. 30. Parotid gland. In control dog, anti-NSE immunoreactivity was detected only the 

interlobular nerve fibers (arrows), whereas interlobular ganglion cells were not found. 

Interlobular ducts (D) and acinar epithelium (A). 

Fig. 31. Mandibular gland. In control dog, anti-NF immunoreactivity was observed as a fine 

network in the fibers distributed throughout the stroma and around acini. 

Fig. 32. Mandibular gland. Myoepithelial cells (arrow) were double positive immunostaining for 

anti-α-SMA (brown) and anti-P antibodies (red). 

Fig. 33. Mandibular gland. The mucous acinar epithelium showed co-strained with anti-P 

antibody reactivity (arrows) and Alcian blue staining. 
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Chapter 2 Localization of the rabies virus antigens and diagnostic utility of the muzzle 

skins of rabid dogs 

 

Introduction 

Rabies is a highly fatal zoonotic disease caused by the rabies virus that can be transmitted 

through infected saliva of mammals [20]. More than 150 countries and territories are currently 

infected with rabies. It is occurring worldwide and more than 55,000 people die of rabies every 

year and approximately 34,500 of these deaths come from Asia [33]. In addition, domestic dogs 

are the major vector of rabies and cause more than 98% of all human rabies deaths in the 

Philippines [11]. In dogs, rabies diagnosis based on clinical symptoms alone is difficult and 

unreliable due to this disease can manifest in various forms [22]; besides, rabies should be 

strongly considered in the differential diagnosis of any animals presenting with similar 

neurological symptoms from other diseases such as canine distemper virus infection [16, 18]. 

According to the World Health Organization recommendation, the most commonly method 

used for postmortem diagnosis of rabies is the direct fluorescent antibody test [33]. This method 

utilizes fresh brain sample such as hippocampus, brain stem or cerebellum. However, using 

brain samples is laborious, time-consuming and there is a high risk of exposure to the rabies 

virus. In addition, decomposed brain sample can yield to reduce the sensitivity of the test and 

may even result in false negative [25]. Thus, alternative methods for rabies diagnosis are needed 

based on a simple collection of non-nervous specimens. Delays in diagnosis of rabies vectors 

greatly increase the number of contacts that require post-exposure prophylaxis [17]. Therefore, 

the early diagnosis of rabies is essential to eliminate the expense and discomfort of unnecessary 

diagnostic tests and inappropriate therapy, help to reduce the spread of the disease and for 

initiation of specific therapy if an aggressive approach is considered [15, 32]. 
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Recently, in humans, ante-mortem detection of rabies by molecular techniques based on 

detecting virus or viral RNA can be established from skin biopsy of hair follicle at the nape of 

the neck [8, 9, 26]. Likewise, in dogs, a molecular technique by using the TaqMan RT-PCR 

from whisker follicles and hair follicles collected from dead animals has been applied for 

postmortem diagnosis of rabies [31]. However, the limitation of molecular techniques is the 

need for an expensive equipment, required standardization and also very stringent quality 

control in order to avoid false positive results [25]. Also, a major limitation of the 

immunofluorescence test is required the use of expensive fluorescent microscope and this 

method may not be practical and also need a cryostat in order to prepare frozen section, and 

limits its use in many developing countries [25]. Using the formalin-fixed samples in 

immunohistochemistry, the rabies virus is rapidly inactivated by formaldehyde, and making the 

transport and laboratory processing of samples much safer; besides, this method is important 

when the diagnosis must be made overseas and requiring international transportation of sample 

with zoonotic diseases [28]. Previously, immunohistochemistry method by using skin samples 

is available for ante-mortem diagnosis of rabies in humans [2, 29]. To my knowledge, however, 

using this method for the localization of rabies viral antigen in the muzzle skin of rabid dogs 

with detailed the route of virus propagation has not been investigated. Therefore, the aims of the 

present study were to evaluate the diagnostic utility of the muzzle skins containing follicle-sinus 

complexes and localization of the viral antigen in the follicle-sinus complexes (FSCs) by using 

immunohistochemistry and immunofluorescent antibody test of rabid dogs in the Philippines. 
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Materials and methods 

Animals and direct fluorescence antibody test (dFAT) 

 The samples were obtained from 9 rabid dogs, which had been submitted to the Research 

Institute of Tropical Medicine (RITM), Philippines for postmortem diagnosis of rabies. The skin 

samples containing approximately 15-20 tactile hair follicles were collected from area around lips 

and muzzle. Small transverse sections (2-3 mm in thickness) of ammon’s horn and medulla were 

cut and slide was touched against the surface of the section and then placed on cold acetone 

overnight for fixing. After fixation, slides were air dried at room temperature. Then 450 μl of 

fluorescence isothiocyanate conjugate anti-rabies monoclonal antibody (Fujirebio®, Malvern, 

Pennsylvania) was added. The slides were incubated for 30 minutes at 37°C in a high humidity 

chamber. Slides were then dipped rinsed for 20 to 25 times in PBS twice followed by distilled 

water for further washing. Small amounts of the mounting, 20% glycerol-Tris buffered saline pH 

9.0, was placed on the slides before covering with coverslips for examination. The slides were 

examined under the fluorescent microscope (Nikon eclipse 80i, Japan). 

Histopathological examination 

 The muzzle skin containing FSCs of rabid (n=9) and control (n=3) dogs were fixed in 

10% neutral buffered formalin at room temperature for more than 48 hour, trimmed at the level 

of the ring sinus, embedded in paraffin, sectioned (3 μm thickness), and mounted. Three rabies-

vaccinated domestic Japanese mixed dogs (8 to 10 years old) were used as a control group. The 

sections were then subjected to hematoxylin and eosin, immunohistochemistry and indirect 

immunofluorescence test as described below. 
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Staining with hematoxylin and eosin (HE) 

The sections were stained with hematoxylin and eosin for general histopathological 

examination. 

Protocol 

Paraffin was removed from the sections by a series of xylene and ethanol rinses. Tissue 

sections were rinsed in distilled water for 5 minutes and stained with hematoxylin solution 

(Certistain®, Darmstadt, Germany) for 3 minutes, rinsed in running tap water for 5 minutes and 

stained with eosin solution (Sakura Finetek Japan Co.,Ltd., Tokyo, Japan) for 5 minutes, rinsed 

in distilled water for three times and dehydrated through a series of ethanol and xylene. The 

sections were then mounted in microscopy mounting medium. 

Immunohistochemistry 

1. For detection of the rabies virus antigens in tissues  

The sections were stained using the streptavidin-biotin-peroxidase complex method with 

rabbit anti-phosphoprotein (P) antibodies. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated for the activation of antigen with 

0.25% trypsin at room temperature for 30 minutes. After this treatment, sections were washed 

three times for 5 minutes in distilled water. After washing, to removed endogenous peroxidase 

activity the sections were immersed with 0.3% H2O2 in methanol for 60 minutes; then they were 

washed three times for 5 minutes in distilled water once again. The sections were treated with 

10% normal goat serum (Nichirei Biosciences, Tokyo, Japan) for 60 minutes to block non-

specific reaction. Sections were then incubated with primary antibody for overnight at 4°C in a 
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humidified chamber. Primary antibody was diluted 1:1200. After incubation with primary 

antibody, sections were washed three times for 5 minutes in phosphate buffer saline (PBS, pH 

7.4) and incubated for 30 minutes at room temperature with the biotinylated anti-rabbit IgG 

(Nichirei Biosciences) as a secondary antibody. Sections were again washed three times for 5 

minutes in PBS; then incubated for 30 minutes in room temperature with peroxidase-

streptavidin enzyme (Nichirei Biosciences) for 30 minutes, washed in PBS three times for 5 

minutes. Finally, sections were visualized using 3-3’-diaminobenzidine tetrachloride substrate 

(DAB substrate; DAKO, Kyoto, Japan), followed by rinsing in distilled water. The sections 

were counterstained with hematoxylin, and rinsing in running tap water again for 5 minutes. The 

sections were then dehydrated and mounted in microscopy mounting medium. Negative control 

was processed with rabbit serum instead of primary antibody. 

2. For detection of the Merkel cells 

The sections were stained using the polymer-based immunohistochemical method with 

rabbit anti-cytokeratin 20 antibodies (CK20, Spring Bioscience, Fremont, USA.) for detection 

of the Merkel cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, 

and washed twice with distilled water. The sections were treated with 10mM Sodium citrate 

buffer (pH 6.0) for activation of antigens by microwaving at 170W for 10 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 

10 minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the 

sections were rinsed in distilled water (three changes, 5 minutes each). The slides were treated 

with the primary antibody for overnight at 4°C in a humidified chamber. Primary antibody was 

diluted 1:200. After incubation with the primary antibody, sections were rinsed in PBS (three 
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changes, 5 minutes each), then incubated for 30 minutes at room temperature with Envision + 

System Labelled Polymer-HRP anti-rabbit (DAKO, Tokyo, Japan) was used as a secondary 

antibody, rinsed in PBS (three changes, 5 minutes each) once again. Finally, sections were 

visualized using DAB substrate, followed by rinsing in distilled water. The sections were 

counterstained with hematoxylin, and rinsing in running tap water again for 5 minutes. The 

sections were then dehydrated and mounted in microscopy mounting medium. 

3. For detection of the Merkel cells 

The sections were stained using the polymer-based immunohistochemical method with 

mouse anti-cytokeratin (CAM 5.2) antibodies (Bection Dickinson, San Jose, USA.) for 

detection of the Merkel cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, 

and washed twice with distilled water. After washing, incubation for 10 minutes in 3% H2O2 in 

methanol to removed endogenous peroxidase activity, and the sections were rinsed in distilled 

water (three changes, 5 minutes each). The sections were treated for the activation of antigens 

with Proteinase-K at room temperature for 30 minutes; then they were rinsed in distilled water 

with three changes of 5 minutes each. The sections were incubated with the primary antibody 

for 60 minutes in room temperature. After incubation with the primary antibody, sections were 

rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 

temperature with Envision + System Labelled Polymer-HRP anti-mouse (DAKO, Tokyo, 

Japan) was used as a secondary antibody, rinsed in PBS (three changes, 5 minutes each) once 

again. Finally, sections were visualized using DAB substrate, followed by rinsing in distilled 

water. The sections were counterstained with hematoxylin, and rinsing in running tap water 
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again for 5 minutes. The sections were then dehydrated and mounted in microscopy mounting 

medium. 

4. For detection of nerve fibers 

The sections were stained using the polymer-based immunohistochemical method with 

monoclonal mouse anti-neurofilament protein antibodies (NF, DAKO, Kyoto, Japan) for 

detection of nerve fibers. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with Proteinase-K at room temperature for 30 minutes; then they were rinsed in 

distilled water with three changes of 5 minutes each. Incubation for 10 minutes in 3% H2O2 in 

methanol to removed endogenous peroxidase activity, and the sections were rinsed in distilled 

water (three changes, 5 minutes each), followed by incubation with the primary antibody for 

overnight at 4°C in a humidified chamber. Primary antibody was diluted 1:100. After incubation 

with the primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), then 

incubated for 30 minutes at room temperature with the Histofine® Simple Stain MAX-PO 

(Mouse) (Nichirei Biosciences) rinsed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 

Double immunofluorescence staining 

Double staining of a single tissue section was used for identification of cell type and the 

co-expression of antigens. Primary antibodies used were rabbit anti-P for detection of rabies 



45 

 

viral antigen in tissue. For detection of the Merkel cell, the sections were stained using mouse 

anti-CK20 or anti-CAM 5.2. The FITC-conjugated goat anti-rabbit IgG (H+L) (Southern 

Biotech, Birmingham, USA) was used as a secondary antibody for immunostaining for against 

rabbit anti-P, and Alexa Fluor® 546 goat anti-mouse IgG (H+L) (Molecular Probes, Eugene, OR, 

USA) was used for against anti-CK20 or anti-CAM 5.2.  

Protocol 

 After fixed the muzzle skin samples within 10% buffer formalin, the tissues were 

washing in running tap water, and these samples were trimmed in 5 mm thick contained tactile 

hair follicles, then embedded samples in medium for tissue freezing (Tissue-Tek® OCT™ 

Compound); frozen tissue blocks are transferred to the cryo-chamber for sectioning or are stored 

in firmly closed vials at -80°C until use. The sections of 10 μm thickness are cut with the cryo-

microtome at -25°C and collected on glass slides. Prior to immunostaining, sections are warmed 

at room temperature and air-dried. Thereafter, washing slides by PBS or distilled water 

, followed by sections are incubated with diluted primary antibody for anti-P (1:1000) for 30 

minutes at 37°C in an incubator, then washing in PBS (three changes, 5 minutes each). After 

washing, sections are incubated with diluted secondary antibody, the FITC-conjugated goat 

anti-rabbit IgG (H+L) (1:200) for 30 minutes at 37°C in an incubator, then washing in PBS 

(three changes, 5 minutes each). After washing, sections are incubated with diluted primary 

antibody for anti-CK20 or anti-CAM 5.2 (1:200) for 30 minutes at 37°C in an incubator, then 

washing in PBS (three changes, 5 minutes each), followed by incubated with diluted secondary 

antibody, the Alexa Fluor® 546 goat anti-mouse IgG (H+L) (1:200) for 30 minutes at 37°C in an 

incubator. Finally, sections are mounted under cover glass with a drop of glycerol. The slides 

are examined under the fluorescence microscope (Nikon, Japan). 
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Results 

Clinical characteristics of the dogs 

 Six dogs were discovered after having died, while three dogs were subjected to 

euthanasia. The 9 dogs (3 male, 3 female, and 3 of unknown sex) ranged in age from 1 to 16 

months, with five dogs having unknown ages. Five of the 9 dogs had no history of rabies 

vaccination, and no information on rabies vaccination status was available for four dogs. Six 

dogs were free-roaming dogs with owners, two were strays, and one was confined with 

household contact. The primary clinical symptoms of canine rabies infection, such as 

unprovoked aggressiveness, mad biting of inanimate objects, aimless running, and excessive 

salivation, were documented in all dogs. All brain specimens were diagnosed as positive for 

rabies virus antigen through the direct immunofluorescence antibody test (dFAT). The clinical 

information and results of dFAT are summarized in the Table 1. 

Gross and histological findings of the muzzle skin in control dogs 

No gross findings were observed in muzzle skin in rabid dogs (Fig. 1). The muzzle skin 

was included many of tactile hairs (also called follicle-sinus complexes, FSCs) (Fig. 2). Each 

FSC was comprised of a blood filled sinus called ring sinus and cavernous sinus that locate 

between the outer and the inner layers of the dermal sheath (Fig. 3). A relatively sizable ring-

wulst was present in the ring sinus. Histologically, in control dogs, the upper portion of the FSC 

is a simple cavity filled with blood and does not contain connective tissue referred to as the ring 

sinus, and the lower half portion contains numerous trabeculae is referred to as the cavernous 

sinus, which are strands of connective tissue that bridge the cavity to constitute part of its 

framework. A cross section of the FSCs at the level of ring sinus demonstrates slightly 

thickened of the outer root sheath, the basal layer of the outer root sheath consists of the 

keratinocytes admixed with melanocytes and Merkel cells (Figs. 4, 5). The Merkel cells are 
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characterized by slightly larger than the associated keratinocytes and melanocytes, and the cells 

had distinctive clear cytoplasm.  

Histopathological examination of the muzzle skin of rabid dogs 

In all rabid dogs, there was no histological evidence of inflammation or necrosis observed 

in the FSCs, primary hair follicle, perifollicular nerves, and any of accessory glands (Figs. 6-9). 

Furthermore, Negri bodies were not observed in all samples examined  

Immunohistochemical examination of the muzzle skin 

Detection of rabies virus antigen by anti-P antibodies 

No viral antigen was detected in control dogs (data not shown). In all rabid dogs, viral 

antigens were detected in the basal layer of the outer root sheath and peripheral nerves 

surrounding the base of FSCs (Figs. 10, 11). Similar findings were observed in longitudinal 

sections (Figs. 12-14). Viral antigens were also detected in the outer root sheath and 

perifollicular nerves of the primary hair follicle (Fig. 15). 

Detection of nervous tissues by anti-NF antibodies 

In control dogs, anti-NF immunoreactivity was demonstrated numerous peripheral nerves 

surrounding FSCs. In addition, anti-NF positive cells were detected in the basal layer of the 

outer root sheath at the level of ring sinus. Similar findings were also observed in rabid dogs 

(Figs. 16, 17). 

Detection of the Merkel cells by anti-CK20 antibodies 

In control dogs, anti CK20-positive Merkel cells were observed in the basal layer of the 

outer root sheath at the level of ring sinus. In addition, a few anti-CK20-positive Merkel cells 
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were also detected scattered in the ring-bulge structure of ring sinus. Similar findings were 

observed in rabid dogs (Figs. 18, 19). 

Detection and localization of the Merkel cells by anti-CAM 5.2 antibodies 

In rabid dogs, anti-CAM 5.2 positive Merkel cells were observed in the basal layer of the 

outer root sheath at the level of ring sinus (Figs. 20, 21). Similar findings were observed in 

control dogs. 

Identification of virus-infected cells by combination of anti-P and anti-CK20 or anti-CAM 5.2 

double immunofluorescence staining 

 In rabid dogs, viral antigens were detected in the basal cell layer of the outer root sheath 

at the level of ring sinus of FSCs, as indicated by the greenish staining (Figs. 22, 26, 31). 

Similar findings were observed in longitudinal sections (Fig. 25). The Markel cells were 

demonstrated by anti-CK20 (Fig. 23) and anti-CAM 5.2 (Figs. 27, 28, 32) antibodies in the 

basal cell layer of the outer root sheath at the level of ring sinus, as indicated by the reddish 

staining. The most of anti-CK20 positive Markel cells showed co-expression with anti-P 

antibody reactivity, as indicated by the yellowish-orange staining (Figs. 24). Likewise, viral 

antigens were detected in cells showing anti-CAM 5.2 staining (Figs. 29, 30, 33). 
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Discussion 

Human rabies cases in developing countries have continued to increase in recent years. In 

a national epidemiological survey, 97.1% of patients had bitten by dogs, and only 2.9% had 

been infected by cats [11]. Therefore, it is important to control and prevent rabies in dogs in 

order to eliminate human rabies in the Philippines and other developing countries. The most 

widely used method for postmortem diagnoses of rabies are the direct fluorescent antibody test 

(dFAT) and reverse transcription polymerase chain reaction (RT-PCR). The dFAT is laborious, 

time-consuming and there is a high risk of exposure to the rabies virus. Molecular detection of 

the rabies viral RNA by RT-PCR technique has the highest sensitivity, but it requires 

standardization and very stringent quality control in order to avoid false results. The neck skin 

biopsy samples are the most widely studied specimens for attempting antemortem and 

postmortem diagnosis [8, 29]. The aim of the present study was to evaluate the diagnostic utility 

of the muzzle skin containing FSCs of rabid dogs and was to localization of the rabies viral 

antigen in the FSCs with detailed viral propagation were discussed.  

In all canines with rabies analyzed in this study, no histological evidence of inflammation 

or necrosis was observed in the FSCs, primary hair follicle, perifollicular nerves, and any of 

accessory glands, as well as Negri body was not found in all samples examined though the viral 

antigen was detected here. These findings are consistent with human cases were infected with a 

canine-variant of rabies [29]. Therefore, it was suggested that viral proliferation in the follicle-

sinus complexes and perifollicular nerves dose not induced inflammation and cytolysis in the 

skin and its adnexa. 

In animals, the FSCs of the muzzle skin included numerous mechanoreceptors and free 

nerve endings received sensory innervation from a deep vibrissal nerve, a branch of the 

infraorbital branch of the trigeminal nerve [12, 13, 24]. In addition, the FSCs play an important 
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role in the tactile sensitivity and assist to explore their environment in some mammals [24]. In 

this study, the viral antigens were detected in the basal layer of the outer root sheath at the level 

of ring sinus and perifollicular nerves of the FSCs, similar to results reported in skunks and 

foxes infected with the street rabies virus [3]. Thus, centrifugal viral propagation spreads to the 

FSCs via sensory innervations. After rabies virus proliferates in the trigeminal nuclei, located in 

the pons region of the brainstem, and the virus then descends to the trigeminal ganglion and 

move along the trigeminal nerve and their branches to reach the FSCs [1, 21, 27]. 

In the present study, virus-infected cells in the FSCs were identified as the Merkel cells. 

Thus, the rabies virus may propagate in Merkel cells and affect nerve innervation. Previous 

studies have described the morphological structures and sensory innervation of the Merkel cells 

[6, 23]. These Merkel cells are considered to be neuroendocrine cells because of their ability to 

produce numerous neurotransmitters and hormones, and make synaptic-like contacts with 

sensory afferent terminals. In addition, studies of transneuronal propagation of rabies virus have 

revealed it propagates exclusively between connected neurons at chemical synapses [30]. 

Therefore, it was suggested that the rabies virus may directly enter Merkel cells via the synaptic 

junctions, and also infection of rabies virus in the Merkel cells and trigeminal tract might be 

responsible for reduction or loss of skin sensation [10]. 

The detection of rabies viral antigen in the muzzle skin after the onset of clinical 

symptoms until the terminal stages of the disease is usually occurred, while an early confirmed 

diagnosis 2-4 days before the onset of symptoms was possible in experimental infection of mice 

infected by a street rabies virus strain, and decreasing amounts to lack of the viral antigen 

present in the muzzle skin occurred in recovered mice [5]. By contrast, these observations differ 

from dogs infected with the street rabies virus that the viral antigen was not detected in the 

muzzle skin taken before rabies symptoms appear [14], suggesting that animals with a negative 

skin result at the time before symptoms appear may not free from the risk of rabies, it was may 
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be likely reflects the presence of a limited amount of viral antigen rather than none. Furthermore, 

the lack of the rabies viral antigen present in the skin tissues of recovered animals, it was 

probably due to CNS-produced neutralizing antibody formed in response to the infection, while 

the percentage of positive skin results increased as the infection progressed [4, 5]. In the present 

study, viral antigen was detected in the muzzle skin of all rabid dogs, which were discovered 

after died or euthanized after rabies symptoms developed, and they were confirmed rabies by 

FAT on brain tissue samples. These findings are consistent with those of previous studies, 

therefore, it was suggested that the presence of viral antigen in the FSCs was strongly associated 

with viral antigen appears in the brain tissue. 

 The anatomical placement and the localization of rabies viral antigen in muzzle skin is an 

important consideration. In this study, in the case of dogs, the author recommended sampling 

area is the muzzle skin contains tactile hairs and thought to be optimal for examination. This is 

because the tactile hair, being very large and have abundant nerve supply which increasing the 

possibilities that rabies virus will be present in quantity adequate to be detected [5, 31]. 

Furthermore, the cutting level of the hair follicle is also should be considered. Previously, in 

routine laboratory testing use the immunofluorescence method for intravitam diagnosis of rabies 

in humans using skin biopsy from the nape of the neck, Crepin et al. [7] noticed that a minimum 

of 20 sections were needed to ensure the observation of hair follicles, and also the technique of 

skin biopsy, the sample should be containing at least 10 hair follicles [19]. In the present study, 

the viral antigen was mainly detected in the level of ring sinus of the FSCs because of this area 

had the highest concentration of Merkel cells and numerous perifollicular nerves. Thus, cutting 

area in the level of ring sinus was recommended. 

Dogs with rabies can manifest in either the furious or paralytic forms [22]. Previous 

studies have described the distribution of the rabies viral antigen in CNS of furious and paralytic 

rabid dogs [27]. In furious dogs, the viral antigen was wildly distributed in all part of the brain, 
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and midbrain particularly the trigeminal nucleus were also heavily infected regions, while in 

paralytic dogs, the viral antigen was confined mainly to the cerebellum and medulla oblongata. 

Wacharapluesadee et al. [31] have demonstrated that paralytic rabid dogs had higher rate of 

false-negative results of the RT-PCR for detection of rabies viral RNA when using whisker 

hairs and saliva, suggesting that much lower amounts of rabies viral RNA are found in the 

brains of paralytic rabid dogs than their furious counterparts [22]. In the present study, the initial 

clinical symptoms of furious rabies such as unprovoked aggression, mad biting of inanimate 

object and aimless running were noted in all rabid dogs. The viral antigen was also detected in 

all brain samples. Therefore, these findings suggested that higher amount of viral load in the 

brain of furious rabid dogs may affect the amount of virus progresses to FSCs. In this study, 

however, the presence of viral antigen in the FSCs of paralytic rabid dogs remains 

uninvestigated, therefore, further studies are required. 

In summary, in this study confirmed the presence of viral antigen was localized in the 

Merkel cells, which were an important mechanosensory receptor cell of the tactile hair, and also 

the path through which the rabies virus descends along the trigeminal nerve after proliferation in 

the brain to reach the Merkel cells of the tactile hair. Although, the positive rate when using 

muzzle skin samples was 100% (9/9), in spite of, the numbers of rabid dogs studied is not 

sufficient for used these muzzle skin samples for ante-mortem diagnosis of rabies in dogs 

because of the present study is lack of serial sampling and correlation with stage of infection 

and most of the present cases were discovered after died. It was, however, suggested that 

muzzle skin are very useful as alternative source of postmortem diagnosis of rabies, especially 

in rabies-endemic developing countries. 
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Table 1. Clinical information and laboratory findings of rabid dogs (samples obtained postmortem) 

No. 
Age 

(months) 
Sex Owned Manner of death Vaccination 

Animal 

conditions 
Neurological symptoms dFAT 

1 16 Female Unknown Found dead No 
Free-roaming and 

owned 
Unprovoked aggressiveness + 

2 Unknown Unknown Unknown Found dead Unknown Stray Unprovoked aggressiveness + 

3 Unknown Unknown Unknown Euthanasia No 
Free-roaming and 

owned 
Unprovoked aggressiveness + 

4 2 Male Unknown Found dead Unknown 
Free-roaming and 

owned 
Apprehensive, watchful look, paralysis + 

5 Unknown Unknown Unknown Found dead No 
Free-roaming and 

owned 
Unprovoked aggressiveness + 

6 8 Female Unknown Found dead No 
Free-roaming and 

owned 

Unprovoked aggressiveness, mad biting 

of inanimate objects 
+ 

7 Unknown Male Unknown Euthanasia Unknown 
Free-roaming and 

owned 
Unprovoked aggressiveness + 

8 Unknown Male Unknown Found dead Unknown Stray Unprovoked aggressiveness + 

9 3 Female Unknown Euthanasia No 
Confined with 

household contact 

Unprovoked aggressiveness, mad biting 

of inanimate objects, aimless running 
+ 

         

+: positive, dFAT: direct fluorescent antibody test 
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Figure legends 

Fig. 1. The muzzle skin. In control dog, the muzzle skin included many of tactile hairs or 

follicle-sinus complexes of varying size. 

Fig. 2. The muzzle skin. In rabid dogs, no gross findings were observed in the FSCs (arrows). 

Fig. 3. High magnification of the muzzle skin after formalin fixation in a control dog. FSCs 

were composed of hair shaft (H), ring sinus (RS) and ring-wulst (arrow). 

Figs. 4-5. Histological findings of FSCs in control dogs. Hair shaft (1) surrounded by multi-

layer epithelial cells (2), outer root sheath (3), ring-wulst (RW) and ring sinus (RS) (Fig. 4). The 

Merkel cells were scattered in the basal layer of outer root sheath (Fig. 5, arrows). 

Fig. 6. Cross-section of the FSCs of rabid dogs. No histological evidence of inflammation or 

necrosis was observed in the hair shaft (1), epithelial cells (2), outer root sheath (3), peripheral 

nerves (4) and ring sinus (RS).  

Fig. 7. FSCs. High magnification of Fig. 6. Cross-section at the level of ring sinus showing 

slightly thickened of the outer root sheath (asterisk), the basal layers of outer root sheath consist 

of the keratinocytes admixed with melanocytes and Merkel cells (arrows). 

Fig. 8. Longitudinal section of the FSCs of rabid dogs. FSCs were composed of hair shaft (1), 

multi-layer epithelial cells (2), outer root sheath (3), peripheral nerves (4) and ring sinus (RS). 

Fig. 9. FSCs. High magnification of Fig. 8. The Merkel cells are slightly larger than the 

associated keratinocytes and melanocytes, and cells had distinctive clear cytoplasm (arrows). 

Figs. 10-11. FSCs. In rabid dogs, viral antigens were detected in the basal layer of the outer root 

sheath (arrows) and perifollicular nerves (Fig. 11, arrow heads). Immunohistochemistry. 
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Figs. 12-14. FSCs. In rabid dogs, longitudinal section showing viral antigens was detected in the 

basal layer of the outer root sheath at level of ring sinus (Figs. 12-13, arrows) and perifollicular 

nerves (Fig. 14, arrow heads). Immunohistochemistry. 

Fig. 15. Primary hair follicle. Viral antigens were also detected in the perifollicular nerves 

(arrow). Immunohistochemistry. 

Figs. 16-17. FSCs. In rabid dogs, anti-NF immunoreactivity demonstrated numerous peripheral 

nerves surrounding FSCs (Fig. 16, arrow heads) and anti-NF positive cells were observed in the 

basal layer of the outer root sheath (Fig. 17, arrows). Immunohistochemistry. 

Figs. 18-19. FSCs. In rabid dogs, anti-CK20 antibodies demonstrated Merkel cells in the basal 

layer of outer root sheath. Immunohistochemistry. 

Figs. 20-21. FSCs. In rabid dogs, anti-CAM 5.2 antibodies demonstrated Merkel cells in the 

basal layer of the outer root sheath. Immunohistochemistry. 

Fig. 22. FSCs. In rabid dogs, anti-P positive cells were mainly observed in the basal layer of the 

outer root sheath (green). Immunofluorescence staining. 

Fig. 23. FSCs. In rabid dogs, Merkel cells were positive for anti-CK20 antibodies (red). 

Immunofluorescence staining. 

Fig. 24. FSCs. The most of anti-CK20 positive cells were merged to anti-P positive cells 

(yellow, arrows). Immunofluorescence staining. 

Figs. 25-26. FSCs. In rabid dogs, anti-P positive cells were mainly observed in the basal layer of 

the outer root sheath (green, arrows). Immunofluorescence staining. 

Figs. 27-28. FSCs. In rabid dogs, Merkel cells were positive for anti-CAM5.2 antibodies (red). 

Immunofluorescence staining. 
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Figs. 29-30. FSCs. The most of anti-CAM5.2 positive cells were merged to anti-P positive cells 

(yellow, arrows). Immunofluorescence staining. 

Fig. 31. FSCs. High magnification of Fig. 26. Anti-P positive cells were mainly observed in the 

basal layer of the outer root sheath (green). Immunofluorescence staining. 

Fig. 32. FSCs. High magnification of Fig. 28. Anti-CAM5.2 positive Merkel cells were 

observed in the basal layer of outer root sheath (red). Immunofluorescence staining. 

Fig. 33. FSCs. High magnification of Fig. 30. The most of anti-CAM 5.2 positive cells were 

merged to anti-P positive cells (yellow, arrows). Immunofluorescence staining. 
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Chapter 3: Comparative pathology about peripheral tissues of mice intramuscularly 

infected with fixed (CVS-11) and street (1088) rabies strains 

 

Introduction 

Rabies virus is an enveloped, negative-stranded neurotropic RNA virus belonging to the 

genus Lyssavirus of the Rhabdoviridae family, which usually causes a lethal encephalomyelitis 

in humans and animals [52]. They have a simple genome of approximately 12 kb in length 

encoding five viral proteins: the nucleocapsid protein (N), phosphoprotein (P), matrix protein 

(M), glycoprotein (G), and large polymerase protein (L) [52]. The G protein is the only surface 

protein that is responsible for binding to specific neural receptors, such as acetylcholine 

receptors [32], neural cell adhesion molecule [49], or nerve-growth factor receptor (P75NTR) 

[52] to enter into target cells and the induction of innate immune responses and humoral 

immune response, such as the production of virus-neutralizing antibodies [27, 60], and also this 

protein is importance for regulating viral replication [39]. Generally, rabies viruses are 

categorized into two main groups: street virus strains (field isolates) and fixed virus strains 

(laboratory-adapted strains). Street strain of rabies viruses are known to be high pathogenic than 

fixed strains after peripheral infections. The first fixed strain made by Pasteur through serial 

intracerebral passage of a street strain in rabbits [26]. Although, both fixed and street strains are 

highly neurotropic laboratory strain and infection leads to the development of fatal acute 

encephalomyelitis; however, the fixed strains have different characteristics from street strains, 

such as regularity and shortening incubation period, stability of virulence, a reduction or loss of 

infectivity and pathogenicity following peripheral inoculations, and increased intracellular 

propagation and budding of virus particles from infected cells [19, 31]. 



69 

 

Previously, several pathological studies of experimental rabies virus infection doing in 

the experimental mouse models have been performed, but mostly emphasizes the routes of viral 

spread and the pathological changes of the central nervous system (CNS) after infected with 

fixed strains or street strains of rabies viruses [15, 29]. The Challenge Virus Standard (CVS) 

strain of fixed rabies virus is often used for the study of rabies pathogenesis because it has a low 

risk of infection for human compared with street (wild-type) strains, and displays highly 

neuropathogenic effects for laboratory animals. Our previous studies have demonstrated that the 

CVS-11 virus causes severe apoptosis of migratory T lymphocytes and neurons in the brain 

after mice inoculated intracerebrally, but paralysis was absent [29, 38]. In contrast, paralysis 

was presented with spinal neurons necrosis when the CVS-11 virus is inoculated into the hind 

limb muscles [28], which are primary target sites of the rabies virus after infected peripherally 

[3]. These observations indicate that the CVS virus are susceptible to nerve cells, but different 

mechanisms exist to induction of cell death as well as the paralytic symptoms associated with 

necrosis of spinal neurons rather than severe neuronal apoptosis in the brain.  

Although animals infected with street rabies virus usually died, there are several studies 

of resistance and of recover after onset of neurological symptoms [13, 15, 23, 58]. However, the 

mechanisms mediating this resistance and recover are poorly understood, but viral strain [15, 

58], and host immune response [34, 45] factors alone or in combination are suggested as 

possible explanations. Induction of neuronal apoptosis by attenuated variant of street rabies 

virus has been reported in experimental mouse models [15]. On the other hand, in the natural 

infection by the wild-type rabies viruses in dogs [47], humans [25, 50] and mice inoculated with 

street rabies virus (silver-haired bat variant) via intracerebral route [57] does not induce 

neuronal apoptosis in the brain. These observations indicate that the degree of neuronal 

apoptosis was inversely correlated with the pathogenicity of street rabies virus. 
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The pathogenesis of rabies in natural infection is generally transmitted through infected 

saliva of mammals. Rarely, transmission has been reported by eating raw meat from infected 

animals [11], aerosol transmission in caves that are contained by large numbers of bats [51], and 

organs transplantation from donors with rabies [46]. Previous studies have described that rabies 

virus replicates in striated myocytes before invaded the axons of motor neurons and sensory 

nerves via neuromuscular junction [33, 38]. The viruses migrate to the CNS via retrograde 

axonal transport. There is no viraemia [41]. After reaching the CNS, the rabies virus then 

spreads centrifugally to the peripheral organs and autonomic nervous system, and is present in 

neurons throughout the body. In the terminal stage of the infection cycle, rabies virus descends 

to the salivary glands with secretion of high-titer virus into the saliva [7, 14]. Furthermore, the 

distribution of rabies virus antigen in peripheral non-nervous tissues has been noted in 

experimental animal models, but most studies emphasize the salivary gland and the skin [5, 7, 

14, 16]. Some studies have been reported in human cases that the rabies virus can be found in 

the nerve plexus of many peripheral organs including the adrenal gland, kidney, pancreas, heart, 

and gastrointestinal tract [24, 27, 50]. Similar studies in animals are infrequent it was done in 

the foxes and skunks [4], bovines [1] and rodents [35]. 

However, the involvement of the peripheral nervous and non-nervous tissues of the head 

has not been well characterized. In this study, the histopathological changes and the distribution 

of viral antigens in peripheral nervous and non-nervous tissues of the head were investigated in 

adult C57BL/6J and ddY mice that were infected intramuscularly with fixed rabies virus (CVS-

11 strain) and street rabies virus (1088-N0 and 1088-N30 strains), respectively.  
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Materials and methods 

Virus, animals, and inoculations 

The Challenge Virus Standard-11 (CVS-11) strain of fixed rabies virus, and the street 

rabies virus 1088-N0 strain and attenuated variant 1088-N30 strain were used in this present 

study. 

The filed isolated street rabies virus (1088 strains) 

The street rabies virus 1088 (N0 and N30) strains were kindly provided by Department of 

Microbiology, Faculty of Medicine, Oita University (Oita, Japan). The parental virus of this 

strain was isolated from a woodchuck in the Centers for Disease Control in Atlanta, U.S.A. was 

obtained from the Yale Arbovirus Unit, Yale University, was grown in mouse neuroblastoma 

C1300 (NA) cells as previously described [58]. The 1088-N0 was passaged in NA cells for 1 

time, while the 1088-N30 was passaged in NA cells for 30 times. The genomic sequence 

analyzed by Department of Microbiology, Faculty of Medicine, Oita University observed on the 

G protein of 1088-N30 have three potential sequons in the N-glycosylation sites, Asparagine 

(Asn) at positions 37, 319, and 194 (Asn37, Asn319, and Asn194); whereas, the N-glycosylation 

sites of 1088-N0 have only two sequons at Asn37, Asn319 [58]. Thirty-six 6-week-old female 

ddY mice were purchased from Kyudo Co., Ltd., (Saga, Japan). Fifteen mice were inoculated 

intramuscularly (right triceps surae muscle) with viral dose of 106 plaque-forming units of each 

strain suspended in phosphate-buffered saline (PBS, pH7.4) and six uninfected control mice 

were inoculated with PBS alone. All the procedures were performed according to the guidelines 

for animal experiments with the approval of the ethics committee of Oita University. 
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The CVS-11 virus 

The CVS-11 rabies virus was obtained from Dr. C. E. Rupprecht (Rabies Section, Virus 

and Rickettsia Zoonoses Branch, Centers for Disease Control and Preservation, Atlanta, GA, 

U.S.A.), was grown in mouse A/J (H-2a) neuroblastoma cells. The G protein of CVS-11 virus 

has three potential sequons in the N-glycosylation sites, at Asn37, Asn204 and Asn319 [58]. Five 6-

week-old female C57BL/6J mice were purchased from Japan SLC, Inc. (Shizuoka, Japan). All 

mice were inoculated intramuscularly (right triceps surae muscle) with viral dose of 107 plaque-

forming units of the CVS-11 strain suspended in PBS. All experiments were performed in level 

2 biosafety laboratories according to the committee on biosafety and animal handling and 

ethical regulation of the National Institute of Infectious Disease, Japan. Animal care, breeding, 

virus inoculation and observation were performed in accordance with the guideline of 

institutional committee. 

Necropsy and histopathological examination 

All experimentally inoculated mice were observed daily for neurological symptoms. 

Groups of CVS-11 inoculated mice were sacrificed at 7 days post-inoculation (PI) for 3 mice, at 

8 and 9 days PI - one mouse per day. Each mouse was anesthetized with chloroform and 

perfused transcardially with 10-15 ml of PBS, followed by fixed with a 10% neutral buffered 

formalin (Wako, Japan). 

In contrast, groups of 1088-N0 and 1088-N30 inoculated mice were sacrificed and their 

sera were sampled at 5, 8, and 11 days PI – five mice per day. It was subjected to 3 mice as a 

negative control in any of the groups. Each mouse was anesthetized with isoflurane or ether and 

perfused transcardially with 10-15 ml of PBS, followed by fixed with a 10% neutral buffered 

formalin (Wako). 
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The carcass and internal organs of each mouse were grossly examined and the brain was 

removed. The skull samples were decalcified in K-CX (Fujisawa, Pharmaceutical Co., Ltd., 

Osaka, Japan) solution at room temperature for 12 hours, and then washed in running tap water 

for 24 hours. Coronal sections of the skulls at the positions of the forehead, including the eyes, 

circumvallate papilla of the tongue, trigeminal ganglion and trigeminal nerve, infraorbital nerve, 

major (parotid and mandibular) salivary glands, lingual minor salivary glands, nasolacrimal duct, 

olfactory bulb, maxillary nerve, optic nerve, hypoglossal nerve, nasal mucosa, lingual mucosa, 

harderian glands, lacrimal gland, facial muscle and muzzle skin were prepared. For routine 

histological diagnosis and examination, tissues samples were embedded in paraffin wax, 

sectioned at 3 μm and dried on a slide dryer machine at 40°C for overnight. Serial sections were 

then subjected to hematoxylin and eosin, special straining (luxol fast blue staining) and 

immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine 

triphosphate (dUTP) nick end labeling (TUNEL) assay as described below. 

Staining with hematoxylin and eosin (HE) 

The sections were stained with hematoxylin and eosin for general histopathological 

examination. 

Protocol 

 Paraffin was removed from the sections by a series of xylene and ethanol rinses. Tissue 

sections were rinsed in distilled water for 5 minutes and stained with hematoxylin solution for 3 

minutes, rinsed in running tap water for 5 minutes and stained with eosin solution for 5 minutes, 

rinsed in distilled water for three times and dehydrated through a series of ethanol and xylene. 

The sections were then mounted in microscopy mounting medium. 
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Staining with luxol fast blue (LFB) 

The sections were stained with LFB for myelin or myelinated axons examination. 

Protocol 

Paraffin was removed from the sections by a series of xylene and ethanol rinses. The 

tissue sections were rinsed in distilled water for 5 minutes, and then sections were immersed in 

0.005% acetic acid solution in 95% ethyl alcohol at room temperature for 5 minutes. Place 

sections in 0.1% LFB solution for 16 hours in a 60°C oven, rinse off excess strain in 95% ethyl 

alcohol, rinse briefly in distilled water, sections were differentiated in 0.05% lithium carbonate 

solution for 15-20 seconds, followed by a final rinse in distilled water. After checking for 

completion of differentiation under the microscope, sections were counterstained in cresyl violet 

solution for 1 minute, rinse again in distilled water for 5 minutes, and followed by dehydrated 

through a series of ethanol and xylene. The sections were mounted in microscopy mounting 

medium. 

Immunohistochemistry 

1. For detection of the rabies virus antigens in tissues  

The sections were stained using the streptavidin-biotin-peroxidase complex method with 

rabbit anti-phosphoprotein (P) antibodies. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated for the activation of antigen with 

0.25% trypsin at room temperature for 30 minutes. After this treatment, sections were washed 

three times for 5 minutes in distilled water. After washing, to removed endogenous peroxidase 

activity the sections were immersed with 0.3% H2O2 in methanol for 60 minutes; then they were 
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washed three times for 5 minutes in distilled water once again. The sections were treated with 

10% normal goat serum (Nichirei Biosciences, Tokyo, Japan) for 60 minutes to block non-

specific reaction. Sections were then incubated with primary antibody for overnight at 4°C in a 

humidified chamber. Primary antibody was diluted 1:1200. After incubation with primary 

antibody, sections were washed three times for 5 minutes in phosphate buffer saline (PBS, 

pH7.4) and incubated for 30 minutes at room temperature with the biotinylated anti-rabbit IgG 

(Nichirei Biosciences) as a secondary antibody. Sections were again washed three times for 5 

minutes in PBS; then incubated for 30 minutes in room temperature with peroxidase-

streptavidin enzyme (Nichirei Biosciences) for 30 minutes, washed in PBS three times for 5 

minutes. Finally, sections were visualized using 3-3’-diaminobenzidine tetrachloride substrate 

(DAB substrate; DAKO, Kyoto, Japan), followed by rinsing in distilled water. The sections 

were counterstained with hematoxylin, and rinsing in running tap water again for 5 minutes. The 

sections were then dehydrated and mounted in microscopy mounting medium. Negative control 

was processed with rabbit serum instead of primary antibody. 

2. For detection of tissue macrophages 

The sections were stained using the polymer-based immunohistochemical method with 

rabbit anti-ionized calcium-binding adaptor molecule 1 antibodies (Iba1, Wako Ltd., Osaka, 

Japan). 

Protocol 

The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with 10 mM sodium citrate buffer (pH 6.0) in a water bath at 95°C for 30 minutes; then 

they were rinsed in distilled water with three changes of 5 minutes each. Incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 
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were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences, Japan) for 60 

minutes at room temperature, followed by incubation with the primary antibody for overnight at 

4°C in a humidified chamber. Primary antibody was diluted 1:500. After incubation with the 

primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), and then 

incubated for 30 minutes at room temperature with the anti-rabbit IgG (Nichirei Biosciences) as 

a secondary antibody. Sections were again washed three times for 5 minutes in PBS; then 

incubated with peroxidase-streptavidin enzyme (Nichirei Biosciences) for 30 minutes at room 

temperature, washed in PBS three times for 5 minutes. Finally, sections were visualized using 

DAB substrate, followed by rinsing in distilled water. Sections were counterstained with 

haematoxylin, and washed again in running tap water for 5 minutes. Slides were then 

dehydrated and mounted in microscopy mounting medium. 

3. For detection of T lymphocytes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD3 antibodies (DAKO, Kyoto, Japan) for detection of T lymphocytes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences, Japan) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 60 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 
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Primary antibody was diluted 1:50. After incubation with the primary antibody, sections were 

rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 

temperature with the Envision + System Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in 

PBS (three changes, 5 minutes each) once again. Finally, sections were visualized using DAB 

substrate, followed by rinsing in distilled water. The sections were counterstained with 

hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium. 

4. For detection of B lymphocytes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD20 antibodies (Spring Bioscience, Fremont, USA) for detection of B 

lymphocytes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

After incubation with the primary antibody, sections were rinsed in PBS (three changes, 5 

minutes each), then incubated for 30 minutes at room temperature with the Envision + System 

Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in PBS (three changes, 5 minutes each) once 

again. Finally, sections were visualized using DAB substrate, followed by rinsing in distilled 



78 

 

water. The sections were counterstained with hematoxylin, and rinsing in running tap water 

again for 5 minutes. The sections were then dehydrated and mounted in microscopy mounting 

medium. 

5. For detection of nerve fibers 

The sections were stained using the polymer-based immunohistochemical method with 

monoclonal mouse anti-neurofilament protein antibodies (NF, DAKO, Kyoto, Japan) for 

detection of nerve fibers. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with Proteinase-K at room temperature for 30 minutes; then they were rinsed in 

distilled water with three changes of 5 minutes each. Incubation for 10 minutes in 3% H2O2 in 

methanol to removed endogenous peroxidase activity, and the sections were rinsed in distilled 

water (three changes, 5 minutes each), followed by incubation with the primary antibody for 

overnight at 4°C in a humidified chamber. Primary antibody was diluted 1:100. After incubation 

with the primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), then 

incubated for 30 minutes at room temperature with the Histofine® Simple Stain MAX-PO 

(Mouse) (Nichirei Biosciences) rinsed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 
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Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end 

labeling (TUNEL) assays 

The sections were evaluated using TUNEL assay kit (ApopTag® Plug peroxidase In Situ 

Apoptosis Detection Kit, Millipore Corporation, Billerica, MA, USA) for detection of 

fragmented DNA of apoptotic cells. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, sections were treated with Proteinase-K 

(DAKO) for 15 minutes at room temperature to activated antigens, rinsed in PBS (three changes, 

5 minutes each). Then, endogenous peroxidase activity was removed with 0.3% H2O2 in 

methanol for 15 minutes at room temperature, rinsed in PBS (three changes, 5 minutes each). 

After washing in PBS, sections were covered with 50 μl of the TUNEL reaction mixture, which 

containing terminal deoxynucleotidyl transferase (TdT) and fluorescein-dUTP, and incubated 

under a coverslip in a humidified chamber for 60 minutes at 37°C. The reaction was stopped by 

washing sections in PBS. Sections were then incubated with anti-digoxigenin peroxidase for 30 

minutes at room temperature. Then, washed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 

Rapid fluorescent focus inhibition test 

Viral neutralizing antibody (VNA) titers against the rabies virus were determined by 

rapid fluorescent focus inhibition tests (RFFIT) as previously described [43, 58]. VNA titers 

were represented as international units per ml (IU/ml), which was calculated by comparison 
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with WHO international standards [RAI: Anti-rabies Immunoglobulin, human, National 

Institute for Biological Standards & Control (NIBSC)]. A VNA titer of ≥0.5 IU/ml was defined 

as adequate for protection against rabies [56]. 
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Results 

Clinical signs and gross findings 

The 1088-N0 virus-infected mice 

Mice showed anorexia, emaciation, ruffled fur and hunched backs at 4 to 5 days after 

inoculation. Mice initially developed signs of rabies including uncoordinated limb movements, 

ataxia, and paralysis in the inoculated limb before developing into a bilateral hind limb paralysis 

at 5 days post-inoculation (PI). Paralysis was progressed to quadriparalysis, and subsequently 

mice became moribund state at 8 days PI. All infected mice died within 11 days PI after onset of 

symptoms. Conversely, normal control mice did not show any clinical symptoms within 11 days 

of intramuscular inoculation. No gross findings were observed at necropsy in any of the mice 

throughout the experimental period. 

The 1088-N30 virus-infected mice 

At 5 days PI, one of 5 mice showed paralysis in the inoculated limb, but others did not 

show any clinical signs consistent with rabies virus infection. Progressive neurological 

symptoms were developed at 8 days PI, one of 5 mice showed bilateral paralysis of the hind 

limbs, and others showed incoordination with decrease hind limb movement. All mice 

recovered at 11 days PI. No gross findings were observed at necropsy in any of the mice 

throughout the experimental period. 

The CVS-11 virus-infected mice 

Paralysis was found at 4 days PI. Paralysis was initially mild with deceased hind limb 

movement, but as the disease worsened, the mice became severely paralyzed at 7 days PI and 

progressed to quadriparalysis and died at 9 days. No gross findings were observed at necropsy 

in any of the mice throughout the experimental period. 
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Histopathological examination 

Trigeminal ganglion and trigeminal nerve 

The 1088-N0 virus-infected mice 

At 5 days PI, mild neuronal degeneration and necrosis was observed in all mice. Most 

affected ganglion neurons showed swollen, pale, with absence of Nissl substance, and some 

showed nuclear pyknosis and cytoplasmic shrinkage (Figs. 1, 3). Occasional neurons contained 

cytoplasmic vacuoles. A small number of mononuclear inflammatory cell infiltrates composed 

mainly of lymphocytes were seen in the ganglia. However, the trigeminal nerves evaluated 

appeared normal. 

At 8 days PI, mild to moderate neuronal degeneration and necrosis was observed in all 

mice. The numbers of degenerated neurons were increased significantly compared to 5 days PI. 

Most affected ganglion neurons showed swollen, rounded or angular, pale, with reduction in or 

absence of Nissl substance, and some showed hypereosinophilic, nuclear pyknosis, cytoplasmic 

shrinkage, and dispersed chromatin. Nuclei were central or slightly eccentric, and some 

contained clumped chromatin or undergoing karyorrhexis (Figs 5, 7). Occasional neurons 

contained cytoplasmic vacuoles. In addition, a small number of lymphocytes infiltrate scattered 

throughout the ganglia and under the epineurium. The trigeminal nerves exhibited mild non-

suppurative neuritis characterized by axonal degeneration, swollen myelin sheaths, minimal 

myelin disintegration and vacuolization with mild infiltration of lymphocytes. 

At 11 days PI, moderate neuronal degeneration and necrosis was observed in all mice. 

The numbers of degenerated neurons were increased significantly compared to 8 days PI. Many 

affected ganglion neurons showed hypereosinophilic, cytoplasmic shrinkage, with reduction in 

or absence of Nissl substance and either a pyknotic nucleus or absence of nuclear detail (Figs 9, 
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10). In addition, a small number of lymphocytes infiltrate scattered throughout the ganglia, often 

surrounding necrotic neurons. In the trigeminal nerves, the degree of damage in nerve bundle is 

higher than in 8 days PI. The trigeminal nerves exhibited mild non-suppurative neuritis 

characterized by swollen myelin sheaths, moderate myelin disintegration and vacuolization with 

infiltration of a few lymphocytes (Figs 13, 14). 

The 1088-N30 virus-infected mice 

At 5 days PI, mild neuronal degeneration and necrosis was observed in all mice. Most 

affected ganglion neurons showed swollen, pale, with absence of Nissl substance, and some 

showed nuclear pyknosis and cytoplasmic shrinkage. A small number of mononuclear 

inflammatory cell infiltrates composed mainly of lymphocytes were seen in the ganglia. 

However, the trigeminal nerves evaluated appeared normal. 

 At 8 days PI, mild to moderate neuronal degeneration and necrosis was observed in all 

mice. The numbers of degenerated neurons were increased significantly compared to 5 days PI. 

Most affected ganglion neurons showed swollen, rounded or angular, pale, with reduction in or 

absence of Nissl substance, and some showed nuclear pyknosis, hypereosinophilic, cytoplasmic 

shrinkage, and dispersed chromatin. Nuclei were central or slightly eccentric, and some 

contained clumped chromatin or undergoing karyorrhexis. A small number of lymphocytes were 

seen in the ganglia. The trigeminal nerves exhibited mild non-suppurative neuritis characterized 

by axonal degeneration, swollen myelin sheaths, minimal myelin disintegration and 

vacuolization with mild lymphocytic infiltration. 

 At 11 days PI, moderate neuronal degeneration and necrosis was observed in all mice. 

The numbers of degenerated neurons were increased significantly compared to 8 days PI. Many 

affected ganglion neurons showed swollen, hypereosinophilic, cytoplasmic shrinkage, with 

absence of Nissl substance and either a pyknotic nucleus or absence of nuclear detail. In 



84 

 

addition, a minimal to moderate number of lymphocytes infiltrate was observed diffusely 

throughout the ganglia. In the trigeminal nerve bundles, the degree of damage in nerve bundles 

is higher than 8 days PI. The trigeminal nerve bundles showed mild to moderate non-

suppurative neuritis characterized by swollen myelin sheaths, moderate myelin disintegration 

and vacuolization with mild lymphocytic infiltration. 

The CVS-11 virus-infected mice 

At 7 days PI, mild neuronal degeneration and necrosis was present in the trigeminal 

ganglia. Most affected ganglion neurons showed swollen, pale, with absence of Nissl substance, 

and some showed nuclear pyknosis and cytoplasmic shrinkage. A small number of mononuclear 

inflammatory cell infiltrates composed mainly of lymphocytes was seen in the trigeminal 

ganglia. The trigeminal nerves the trigeminal nerves evaluated appeared normal. 

At 8 days PI, in the trigeminal ganglion exhibited mild to moderate non-suppurative 

ganglionitis characterized by mild lymphocytic infiltration and moderate neuronal degeneration 

and necrosis. Most affected ganglion neurons showed nuclear pyknosis and cytoplasmic 

shrinkage, and occasional ganglion neurons were swollen, pale, with reduction or absence of 

Nissl substance. The trigeminal nerves showed mild axonal vacuolization.  

At 9 days PI, the numbers of necrotic neurons were increased significantly compared to 7 

and 8 days PI. Many neurons in the ganglion have a swollen, hypereosinophilic, with reduction 

or absence of Nissl substance and either a pyknotic nucleus or absence of nuclear detail (Figs. 

19, 21). Mild lymphocytic infiltration was scattered throughout the ganglia. The trigeminal 

nerves exhibited mild axonal degeneration characterized by minimal myelin disintegration and 

vacuolization.  
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Optic nerve 

The 1088-N0 and 1088-N30 viruses-infected mice 

At 5 days PI, mild lymphocytic infiltration was observed in the nerve fibers. The numbers 

of lymphocytes were gradually increased at 8 and 11 days PI. 

The CVS-11 virus-infected mice 

At 7 days PI, mild lymphocytic infiltration was observed in the nerve fibers. The optic 

nerves of 8 and 9 days PI were not found on the sections. 

Maxillary nerve and nasolacrimal duct 

The 1088-N0 and 1088-N30 viruses-infected mice 

At 5 days PI, no histological changes were observed in the maxillary nerves. In 

nasolacrimal duct, epithelial cells were slightly swollen and sloughed epithelial cells were 

occasionally present in the duct lumen. In addition, mild hyperplasia of spindle-shaped stromal 

cells and mild to moderate infiltration of mononuclear inflammatory cells were also seen around 

the duct. 

At 8 days PI, no histological changes were observed in the maxillary nerves. In 

nasolacrimal duct, mild edema of the lamina propria, mild hyperplasia of spindle-shaped 

stromal cells, and mild to moderate infiltration of mononuclear inflammatory cells were also 

seen around the duct. In addition, the mucosal surface was thickened when compared to the 5 

days PI, and epithelial cells showed degenerative changes and sloughed into the duct lumen. 

At 11 days PI, the maxillary nerves showed mild to moderate axonal vacuolar 

degeneration. In some of these axons exhibit irregular swelling and fragmentation. In 

nasolacrimal duct, mild edema of the lamina propria, mild hyperplasia of spindle-shaped 

stromal cells, and moderate infiltration of mononuclear inflammatory cells were observed 
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around the duct. Degenerative changes of the epithelial cells were more severe than 8 days PI. 

In addition, the number of sloughed epithelial cells, cellular debris, and mononuclear 

inflammatory cells in the duct lumen were much higher than 8 days PI (Fig. 25). 

The CVS-11 virus-infected mice 

At 7 days PI, the maxillary nerves showed mild axonal degeneration. At 8 and 9 days PI, 

more advanced lesions appeared, including moderate axonal swelling and fragmentation, and 

myelin disintegration. In the nasolacrimal ducts, epithelial cells were swollen and dissociated 

with edematous separation from underlying basal lamina. Some of these epithelial cells showed 

degenerative changes and sloughed into the duct lumen. In addition, mild hyperplasia of 

spindle-shaped stromal cells and mild to moderate infiltration of mononuclear inflammatory 

cells were also observed around the duct. 

Olfactory bulb and nasal mucosa 

The 1088-N0 and 1088-N30 viruses-infected mice 

At 5 days PI, no histological changes were observed in the olfactory bulb. In the nasal 

septum mucosa, mild infiltration of lymphocytes and a very few neutrophils were observed 

surrounding the secretory glands in the lamina propria. 

At 8 and 11 days PI, no histological changes were observed in the olfactory bulb. In the 

nasal septum mucosa, mild infiltration of lymphocytes and neutrophils observed surrounding 

the secretory glands in the lamina propria, while nasal mucosal epithelium appeared intact. 

The CVS-11 virus-infected mice 
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At 7, 8 and 9 days PI, no histological changes were observed in the olfactory bulb. In the 

nasal septum mucosa, mild infiltration of lymphocytes was observed surrounding the secretory 

glands in the lamina propria, while nasal mucosal epithelium appeared intact. 

Infraorbital nerve, eyes (retina), lacrimal gland and harderian gland 

The 1088-N0 virus-infected mice 

At 5, 8 and 11 days PI, no histological changes were observed in the retina, lacrimal 

glands and harderian glands. 

At 8 and 11 days PI, infraorbital nerves showed mild axonal vacuolar degeneration. In 

some of these axons exhibit irregular swelling and fragmentation. 

The 1088-N30 virus-infected mice 

At 5, 8 and 11 days PI, no histological changes were observed in the infraorbital nerves, 

lacrimal glands, harderian glands and retina. 

The CVS-11 virus-infected mice 

At 7, 8 and 9 days PI, no histological changes were observed in the infraorbital nerves, 

lacrimal glands, harderian glands and retina (Fig. 23). 

Hypoglossal nerves, lingual mucosa, circumvallate papillae and lingual minor salivary 

glands 

The 1088-N0 and 1088-N30 viruses-infected mice 

At 5 days PI, no histological changes were observed in the hypoglossal nerves, lingual 

mucosa, circumvallate papillae and lingual minor salivary glands. 
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At 8 days PI, circumvallate papillae showed mild to moderate degeneration of the taste 

cells characterized by increased cytoplasmic eosinophilia, nuclear pyknosis, and appear rounded 

(Fig. 29). Mild inflammatory cell infiltrates composed of lymphocytes and neutrophils were also 

observed in the lamina propria. 

At 11 days PI, more advanced lesions were observed in the circumvallate papillae, 

including moderate degeneration of taste cells characterized by markedly increased cytoplasmic 

eosinophilia, cytoplasmic shrinkage and nuclear pyknosis. Mild inflammatory cell infiltrates 

composed of lymphocytes and neutrophils were also seen in the lamina propria. No pathological 

findings were observed in the lingual minor salivary glands. 

The CVS-11 virus-infected mice 

At 7, 8 and 9 days PI, no histological changes were observed in the hypoglossal nerves, 

lingual mucosa and lingual minor salivary glands. However, circumvallate papillae showed 

moderate degeneration of the taste cells characterized by densely eosinophilic cytoplasm, 

cytoplasmic shrinkage and nuclear pyknosis. Mild mononuclear inflammatory cell infiltrates 

composed of lymphocytes and macrophages were observed in the lamina propria. 

Parotid and mandibular salivary glands 

The 1088-N0 virus-infected mice 

At 5, 8 and 11 days PI, no histological changes were observed in the parotid glands. On 

the other hand, the mandibular glands showed mild inflammatory cell infiltrates composed 

mainly of lymphocytes and a few plasma cells surrounded striated ducts and interstitial 

connective tissue, while the acinar epithelium appeared intact at 8 days PI. Similar findings 

were observed in the 11 days PI, but numbers of inflammatory cells decreased when compared 

to the 8 days PI. 



89 

 

The 1088-N30 virus-infected mice 

At 5, 8 and 11 days PI, no histological changes were observed in the parotid glands. On 

the other hand, the mandibular glands showed mild inflammatory cell infiltrates composed 

mainly of lymphocytes and a few plasma cells surrounded striated ducts and interstitial 

connective tissue, while the acinar epithelium appeared intact. 

The CVS-11 virus-infected mice 

At 7, 8, and 9 days PI, no histological changes were observed in the parotid and 

mandibular glands. 

Facial muscle 

The 1088-N0 virus-infected mice 

No histological changes were observed in the facial muscle at 5 days PI. At 8 days PI, 

intramuscular nerve fibers showed mild axonal degeneration characterized by slight swelling 

and mild fragmentation. Mild myelin disintegration and vacuolization were also found in a few 

nerve fibers.  

At 11 days PI, intramuscular nerve fibers showed moderate to severe axonal degeneration 

characterized by irregular swelling and some axons have ruptured into beaded structures. In 

addition, the facial muscle bundles showed myofiber degeneration characterized by loss of 

cross-striations, swollen with pale eosinophilic cytoplasm, and some myofibers were 

fragmented and hyalinized eosinophilic cytoplasm with nuclear pynknosis (Fig. 31). 

The 1088-N30 virus-infected mice 
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No histological changes were observed in the facial muscle fibers at 5 days PI. At 8 and 

11 days PI, intramuscular nerve fibers showed mild axonal vacuolar degeneration and 

fragmentation, while the muscle fibers appeared intact. 

The CVS-11 virus-infected mice 

At 7, 8, and 9 days PI, no histological changes were observed in the facial muscle and 

intramuscular nerve fibers. 

Muzzle skin 

The 1088-N0 virus-infected mice 

No histological changes were observed in the muzzle skin at 5 days PI. At 8 and 11 days 

PI, the peripheral nerve fibers in the muzzle skin showed mild axonal vacuolar degeneration 

characterized by slight swelling, and some axons have oval vacuoles or disintegrated into 

beaded structures. In addition, in the hair follicle epithelium, individual epithelial cells showed 

mild degeneration characterized by increased eosinophilic granular cytoplasm with 

vacuolization. 

The 1088-N30 virus-infected mice 

At 5 and 8 days PI, no histological changes were observed in the muzzle skin. At 11 days 

PI, the peripheral nerve fibers in the muzzle skin showed mild axonal vacuolar degeneration 

characterized by slight swelling, and some axons have oval vacuoles or disintegrated into 

beaded structures. 

The CVS-11 virus-infected mice 

At 7, 8, and 9 days PI, no histological changes were observed in the muzzle skin. 
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Immunohistochemical examination 

Detection of rabies virus antigens by anti-P antibodies 

The anatomical distribution of rabies virus antigens in the peripheral tissues of head in 

mice infected with 1088-N0, 1088-N30 and CVS-11 viruses was summarized in Table 1. 

The 1088-N0 virus-infected mice 

At 5 days PI, viral antigens were detected in the trigeminal ganglia (2 mice). In the 

trigeminal ganglia, viral antigens were observed in the ganglion neurons characterized by a 

small spots to sparse granularity throughout the cytoplasm of ganglion neurons (Figs 2, 4). 

At 8 days PI, viral antigens were detected in the trigeminal ganglia and trigeminal nerves 

(5 mice), hypoglossal nerves (1 mouse), circumvallate papillae (1 mouse), lingual mucosa (3 

mice), retina (2 mice), facial muscle (1 mouse) and muzzle skin (3 mice). In the trigeminal 

ganglia, viral antigens were observed in the many ganglion neurons characterized by sparse to 

diffuse granularity throughout the cytoplasm of neurons and their axonal and dendritic processes, 

the number of viral antigens were significantly increased than 5 days PI (Figs 6, 8). In lingual 

mucosa, a small number of viral antigens were observed in the epithelial cells of the stratified 

squamous epithelium (Fig. 27). In circumvallate papillae, viral antigens were seen as small spots 

in the cytoplasm of taste cells (Fig. 30). In the retina, viral antigens were found in the ganglion 

cells in the ganglion cell layer, characterized by diffuse granularity throughout the cytoplasm of 

neurons and their axonal processes in the inner plexiform layer. In the facial muscle, viral 

antigens were observed as a sparse granularity in the cytoplasm of myoblasts (Fig. 33) and 

intramuscular nerve fibers. In the muzzle skin, viral antigens were observed as small 

intracytoplasmic granules at the border of the stratum granulosum and stratum corneum of the 
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epidermis, peripheral cutaneous nerve fibers and the basal layer of the outer root sheath of hair 

follicles. 

At 11 days PI, viral antigens were detected in the trigeminal ganglia and trigeminal 

nerves (5 mice), maxillary nerves (5 mice), hypoglossal nerves (3 mice), lingual mucosa (4 

mice), lingual minor salivary glands (4 mice), infraorbital nerves (5 mice), facial muscle (5 

mice), muzzle skin (5 mice) and the retina (5 mice). In the trigeminal ganglia, the numbers of 

viral antigens were significantly increased than 8 days PI. In the trigeminal nerves, viral 

antigens were observed as small spots and prominent in fragmented nerve fibers, and an 

increase in the number of viral antigen-positive cells compared to 8 days PI. In the lingual 

mucosa, viral antigens were observed in the epithelial cells of stratified squamous epithelium, 

and an increase in the number of viral antigens when compared to 8 days PI. In the lingual 

minor salivary glands, viral antigens were observed in the cytoplasm of the serous acinar cells 

(Fig. 28). In the infraorbital nerves, viral antigens were seen as small spots and prominent in 

fragmented nerve fibers. In the retina, viral antigens were found in the ganglion cells in the 

ganglion cell layer and their axonal processes in the inner plexiform layer. The facial muscle, 

viral antigens were detected in intramuscular nerve fibers, and an increase in the number of viral 

antigens when compared to 8 days PI (Fig. 32). In the muzzle skin, viral antigens were observed 

as small intracytoplasmic granules at the border of the stratum granulosum and stratum corneum 

of the epidermis, peripheral cutaneous nerve fibers, and the basal layer of the out root sheath of 

hair follicles (Figs. 34-36). 

The 1088-N30 virus-infected mice 

 No viral antigens detected in all tissues at 5 days PI. At 8 days PI, viral antigens were 

detected in the trigeminal ganglia and trigeminal nerves (5 mice). In the trigeminal ganglia, viral 

antigens were observed in the ganglion neurons, characterized by sparse to diffuse granularity 
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throughout the cytoplasm of neurons and their axonal and dendritic processes. In the trigeminal 

nerves, viral antigens were seen as small spots and prominent in fragmented nerve fibers. 

At 11 days PI, viral antigens were detected in the trigeminal nerves (2 mice), maxillary 

nerves (4 mice), hypoglossal nerves (1 mouse), lingual mucosa (3 mice), lingual minor salivary 

gland (4 mice) and muzzle skin (3 mice). In the trigeminal nerves, viral antigens were observed 

as small spots and prominent in fragmented nerve fibers. In the maxillary nerves, viral antigens 

were seen as small spots and prominent in fragmented nerve fibers. In the lingual mucosa, viral 

antigens were found in the epithelial cells of the stratified squamous epithelium. In the muzzle 

skin, viral antigens were observed as small intracytoplasmic granules at the border of the 

stratum granulosum and stratum corneum of the epidermis, peripheral cutaneous nerve fibers, 

and positive cells were also found in the basal layer of the external root sheath of hair follicles. 

The CVS-11 virus-infected mice 

At 7 days PI, viral antigens were detected in the trigeminal ganglia and trigeminal nerves 

(3 mice), lingual mucosa (2 mice), and the retina (3 mice). In the trigeminal ganglia, viral 

antigens were observed in the ganglion neurons characterized by sparse to diffuse granularity 

throughout the cytoplasm of neurons and their axonal and dendritic processes. In lingual mucosa, 

a small number of positive cells were observed in the epithelial cells of the stratified squamous 

epithelium. In the retina, viral antigens were observed in the ganglion cells in the ganglion cell 

layer characterized by diffuse granularity throughout the cytoplasm and their axonal processes 

in the inner plexiform layer (Fig. 24). 

At 8 days PI, in the trigeminal ganglia, viral antigens were detected mainly in the 

cytoplasm, dendrites and axons of ganglion neurons (1 mouse). Viral antigens were sparse to 

diffuse granularity throughout the cytoplasm of ganglion neurons, but no viral antigens were 

detected in other tissues. 
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At 9 days PI, viral antigens were detected in the ganglion neurons of the trigeminal 

ganglia and lingual mucosa (1 mouse). Viral antigens were diffuse granularity throughout the 

cytoplasm of ganglion neurons (Figs. 20, 22). In lingual mucosa, a small number of positive 

cells were observed in the stratified squamous epithelium. 

Detection of nerve fibers by anti-neurofilament protein (NF) and for identification of the myelin 

sheath of the myelinated nerve fibers by luxol fast blue (LFB) staining 

The 1088-N0 and 1088-N30 viruses-infected mice 

 At 8 days PI, anti-NF immunoreactivity showed a slight decrease of axonal density in the 

trigeminal ganglia and trigeminal nerves. 

 At 11 days PI, anti-NF immunoreactivity showed weak and irregular positive reaction, 

and diffusely loss of both small- and large-diameter axons in the trigeminal ganglia (Fig. 12), 

trigeminal nerves (Figs 17, 18), maxillary nerves and infraorbital nerves. In trigeminal ganglia, 

LFB staining revealed a decrease density of myelinated nerve fibers and extensive axonal 

demyelination, and degenerated ganglion neurons were pale because of depletion of Nissl 

substance (Fig. 11). Likewise, in trigeminal nerves, LFB staining revealed a decrease density of 

myelinated nerve fibers and extensive axonal demyelination (Figs. 15, 16). 

The CVS-11 virus-infected mice 

 At 8 and 9 days PI, anti-NF immunoreactivity showed diffusely loss of both small- and 

large-diameter axons in the maxillary nerves, trigeminal nerves, and trigeminal ganglia. In 

addition, LFB-stained sections showing a decrease density of myelinated nerve fibers and 

extensive axonal demyelination in the maxillary nerves and trigeminal nerves. 
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Detection of tissue macrophages by anti-Iba1 antibodies 

The 1088-N0 virus-infected mice 

At 5 days PI, a small number of anti-Iba1 positive cells appeared in the lumen and lamina 

propria of the nasolacrimal ducts. At 8 and 11 days PI, an increase in the number of anti-Iba1 

positive cells appeared in the lumen of the nasolacrimal ducts. 

The 1088-N30 virus-infected mice 

At 5 days PI, a small number of anti-Iba1 positive cells appeared in the lumen and lamina 

propria of the nasolacrimal ducts. At 8 and 11 days PI, an increase in the number of anti-Iba1 

positive cells appeared in the lumen and lamina propria of the nasolacrimal ducts. 

The CVS-11 virus-infected mice 

At 7, 8 and 9 days PI, a small number of anti-Iba1 positive cells appeared in the lumen 

and in the lamina propria of the nasolacrimal ducts. 

Detection of T lymphocytes by anti-CD3 antibodies 

The 1088-N0 and 1088-N30 viruses-infected mice 

At 5, 8 and 11 days PI, a small numbers of anti-CD3 positive cells appeared in the 

trigeminal ganglia, trigeminal nerves and optic nerves. 

The CVS-11 virus-infected mice 

At 7 days PI, a small number of anti-CD3 positive cells appeared in the optic nerves. At 8 

and 9 days PI, a small number of anti-CD3 positive cells were also seen in the trigeminal 

ganglia. 
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Detection of B lymphocytes by anti-CD20 antibodies 

The 1088-N0 virus-infected mice 

At 5 days PI, a small number of anti-CD20 positive cells appeared in the lumen of the 

nasolacrimal ducts. Increased numbers of anti-CD20 positive cells appeared in the submucosa at 

8 and 11 days PI. 

The 1088-N30 virus-infected mice 

At 5, 8 and 11 days PI, a small number of anti-CD20 positive cells appeared in the lamina 

propria and lumen of the nasolacrimal ducts. 

The CVS-11 virus-infected mice 

At 8 and 9 days PI, a small number of anti-CD20 positive cells appeared in the 

submucosa of the nasolacrimal ducts. 

Detection of apoptotic cells by TUNEL assays 

The CVS-11 virus-infected mice 

There are no TUNEL-positive cells observed in any of the anatomical areas. 

The 1088-N0 and 1088-N30 viruses-infected mice 

There are no TUNEL-positive cells observed in any of the anatomical areas. 

Determination of viral neutralizing antibody (VNA) titer by rapid fluorescent focus inhibition 

tests 

The VNA titer in the serum of the 1088-N0 and 1088-N30 viruses-infected mice was 

shown in Table 2 and Table 3, respectively. At 5 days PI, the VNA titer was significantly higher 
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in mice infected with 1088-N30 viruses compared to 1088-N0 virus-infected mice. Four of five 

mice infected with 1088-N30 viruses had a VNA titer of more than 0.5 IU/ml, whereas only one 

of five mice infected with 1088-N0 viruses had a VNA titer of more than 0.5 IU/ml. The trend 

for the variants to induce a greater response than 1088-N0 viruses was also observed at 8 and 11 

days PI, even though all of the mice infected with 1088-N0 viruses had a VNA titer above 0.5 

IU/ml. 
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Discussion 

 In this chapter, the mouse model was used to investigate virus distribution in different 

regions of the peripheral nervous and non-nervous tissues of head, with the exception of brain 

following peripheral intramuscular inoculation with fixed and street rabies virus. After 

intramuscular inoculation, C57BL/6J mice that were infected with the fixed rabies virus strain 

CVS-11 exhibited paralysis, became moribund and died during the terminal stage of infection. 

Similar symptoms occurred in ddY mice were infected with 1088-N0 viruses. On the other hand, 

ddY mice infected with attenuated virus strain 1088-N30 developed hind limb paralysis, but 

recovered from infection at the same time. The VNA titers in the serum of mice infected with 

1088-N30 viruses were significantly higher than mice infected with 1088-N0 viruses (see 

Tables 2 and 3). These findings are consistent with those for mice that were inoculated with the 

CVS-11 viruses intramuscularly [28], as well as, infection of mice with an attenuated strain of 

rabies virus triggers a strong specific immune response that results in a non-lethal infection [58]. 

Several studies have demonstrated factors that affect various aspects of rabies 

pathogenesis include route of inoculation [23, 38], viral strain [15, 44], host immunocompetence 

[9, 37], and species of the host [18], but not all of these appear to influence the distribution of 

virus in the CNS. Interestingly, Yamada et al. [58] demonstrated that the G protein determines 

the distribution pattern of rabies virus in the brain, and a strong humoral immune response 

induced by the attenuated virus strain 1088-N30 is mainly responsible for restricted virus spread 

within the CNS. However, the street rabies virus elicited weaker innate immune responses 

compared with an attenuated fixed virus [54]. In the present study, viral antigens were detected 

in the trigeminal ganglia, trigeminal nerve, maxillary nerve, infraorbital nerve, hypoglossal 

nerve, retina, lingual mucosa, taste cells of the circumvallate papillae, lingual minor salivary 

glands, facial muscle and muzzle skin of mice infected with 1088-N0 viruses. On the other hand, 

the 1088-N30 viruses had infected the trigeminal ganglia, trigeminal nerve, maxillary nerve, 
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hypoglossal nerve, lingual mucosa, lingual minor salivary glands and muzzle skin. The CVS-11 

viruses had restrictively infected the trigeminal ganglia, trigeminal nerve, lingual mucosa, and 

the retina (see Table. 1). These findings demonstrate that, although three strains of rabies virus 

grew in the CNS, the street strains spread rapidly to the peripheral nervous tissues and non-

nervous tissues of the head. In addition, early induction of inflammation and VNA are an 

important role to prevent the virus spread from the CNS to peripheral tissues. 

In the present study, the trigeminal ganglia and trigeminal nerves were consistently 

infected even at the early stage of the infection with the CVS-11, 1088-N0 and 1088-N30 

viruses. In addition, bilateral non-suppurative trigeminal ganglioneuritis, characterized by 

neuronal necrosis, Nissl substance dissolution, occasional nuclear pyknosis, cytoplasmic 

shrinkage, axonal demyelination, and mononuclear cells infiltration were also found in all 

experimental groups. Similar findings have been reported in bats experimentally infected with 

attenuated fixed viruses [40] and bovines naturally infected with street (wild-type) rabies viruses 

[1]. Previous studies have described the morphological structure of trigeminal ganglion of 

rodent that contains a number of sensory neurons and provides sensory innervation to the head 

and face [12]. Thus, these injuries can cause reduction or loss of skin sensation and loss or 

reductions in reflections on the head and face [10]. 

In this study, infection of the epidermal cells and external root sheath cells of tactile hair 

follicles was found in the muzzle skin of mice infected with 1088-N0 and 1088-N30 viruses. 

These findings are consistent with previous report of skunks and foxes infected with street 

rabies virus [4]. Previous studies have documented the muzzles skin contains many tactile hair 

follicles that are surrounded by an abundant nerve supply [5, 55], which is receive sensory 

innervation by the infraorbital branch of the trigeminal nerve [12]. Thus, centrifugal viral 

propagation to the tactile hair follicles in muzzle skin is probably mediated by trigeminal 

ganglion neurons that supply tactile hairs (via trigeminothalamic axons). 
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The salivary gland and tongue are known to be important as portals of exit for the rabies 

virus into the saliva [8, 42]. It is essential in most natural rabies vectors for horizontal 

transmission of the virus to other hosts by biting, and previous study indicated virus can appears 

in the saliva of dogs up to 14 days before appearance of clinical symptoms [14]. In this study, 

during observes clinical symptoms, the viral antigen was detected in the lingual mucosal 

epithelium in all of experimental groups; however, only the 1088-N0 group, viral antigens were 

detected in the taste cells of circumvallate papillae and also found in the serous acinar 

epithelium of the lingual minor salivary glands, whereas no viral antigens detected in both 

parotid and mandibular salivary glands. Similar observations have been demonstrated in humans 

that lack of viral antigens in the major salivary glands [24, 50], but appeared in the taste cells 

and acini of the minor salivary gland of tongue. On the other hand, in chapter 1, I found 

abundant acinar infection in the mandibular glands of naturally infected rabid dogs. Therefore, it 

was suggested that acinar infection of the major salivary glands only be prominent in natural 

rabies vectors, where excretion of high-titer virus in the saliva is important for transmission of 

the infection, whereas the tongue and lingual minor salivary gland in mice appears to be a 

preferred location for virus replication and responsible for the production of saliva that contains 

lower amounts of infectious rabies virus. 

The hypoglossal nerve provides motor supply to the skeletal muscle of the tongue and for 

controls all tongue movements. Retrograde transneuronal infection by rabies virus in the 

hypoglossal nerve affects ability to control tongue movements [53]. Smart and Charlton [44] 

reported that the amount of viral antigen appeared in the hypoglossal nuclei higher in street 

virus-infected skunks than in CVS virus infected-skunks. In the present study supported the 

former case because viral antigen was detected in the hypoglossal nerves in some mice that 

were infected with street rabies virus, but did not detected in CVS-11 virus-infected mice. These 

findings indicate that after the street rabies virus replicates within the hypoglossal nuclei, 
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located in the medulla oblongata [47], the virus then spreads centrifugally along the hypoglossal 

nerve to reach skeletal muscle fibers of the tongue [24], meanwhile it may causes of the 

hypoglossal nerve dysfunction associated with tongue paralysis and dysphagia that are common 

symptoms of rabies in small animals. 

The involvements of the ocular structures in rabies virus infection have been reported 

previously [16, 17, 59]. Infection was observed in the corneal epithelial cells, and in ganglion 

cell layer of the retina, which is innervates by sensory afferents via the optic nerve [30]. 

Histology also showed lymphoplasmacytic infiltration in the retina, ciliary body and in the 

choroid [17]. Camelo et al. [6] described that T lymphocyte plays an important role in the 

protection of the eye against rabies virus ocular infection. In the present study, viral antigens 

were detected in the retinal ganglion cells of mice infected with CVS-11 and 1088-N0 viruses, 

whereas in the corneal epithelial cells and photoreceptor did not become infected until the late 

stage of infection. In addition, small numbers of T lymphocytes were observed in the optic 

nerves, but no viral antigen was detected here. Thus, centrifugal viral propagation progress from 

the CNS to the retina via the optic nerve, but an inflammatory response may lead to the 

clearance of the pathogen in nerve fibers. 

Within the CNS, infiltration of T lymphocytes has been reported to play a major role 

not only in blocking rabies virus spread [3], but also in clearing rabies virus from the CNS [20]. 

Nevertheless, the other outcome of the infiltrating T lymphocytes that may release of cytotoxic 

cytokines such as interferon (IFN)-γ to kill virus-infected cells [26]. Recently, some studies 

have shown that both fixed and street rabies viruses induce apoptosis in inflammatory cells in 

the CNS [29, 48], suggesting that interfering with release of cytotoxic cytokines and against 

inflammatory cell-mediated cell lysis. In this study, virus infected trigeminal ganglion neurons 

exhibited necrotic features by light microscopy and they were negative for TUNEL staining and 

also infiltrating T lymphocytes did not undergo apoptosis. These findings suggest that 
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degeneration of ganglion neurons may be associated with T lymphocytes infiltration in the 

trigeminal ganglion, and their cytokine likely serve to promote the necrosis of ganglion neurons, 

which might also contribute to the loss of facial sensation. 

Previous studies have documented the evidence of the extra-cranial tissues inflammation, 

including the lung, heart, liver, and kidney in human and mice infected with street rabies virus 

associated with tissue macrophages infiltration [21, 35]. After rabies virus infection, the 

activated tissue macrophages express inducible nitric oxide synthase (iNOS), which stimulate 

the secretion various kinds of proinflammatory cytokines, such as interleukin (IL)-1β, tumor 

necrosis factor (TNF)-α, interferon (IFN)-γ, and nitric oxide (NO) [2, 35]. High NO levels are 

cytotoxic that can activate protease and inactivate anti-proteases which lead to increase in 

breakdown of the extracellular matrix, and direct injury to epithelial cells [36]. In the present 

study, mild to moderate number of macrophages positive to anti-Iba1 antibody were detected in 

the nasolacrimal ducts in all experimental groups, and also the nasolacrimal ducts exhibited 

degeneration and sloughing of the epithelial cells. Therefore, it was suggested that the tissue 

macrophages and their cytokines play an important role in the formation of tissue inflammation 

in this study. 
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Anatomical Area 

CVS-11 virus 1088-N0 virus 1088-N30 virus 

7 DPI 

(n=3) 

8 DPI 

(n=1) 

9 DPI 

(n=1) 

5 DPI 

(n=5) 

8 DPI 

(n=5) 

11 DPI  

(n=5) 

5 DPI 

(n=5) 

8 DPI 

(n=5) 

11 DPI 

(n=5) 

Trigeminal ganglion 3 1 1 2 5 5 - 5 - 

Trigeminal nerve 3 1 1 2 5 5 - 5 2 

Optic nerve - - NA - - - - - - 

Maxillary nerve - - - - - 5 - - 4 

Nasolacrimal duct - - - - - -  - - 

Olfactory bulb - - - - - - - - - 

Nasal mucosa - - - - - - - - - 

Retina 3 - - - 2 5 - - - 

Lacrimal glands - - NA - NA NA - NA NA 

Harderian glands - - - - - - - - - 

Infraorbital nerve - - - - - 5 - - - 

Hypoglossal nerve - - - - 1 3 - - 1 

Lingual mucosa 2 - 1 - 3 4 - - 3 

Circumvallate papillae (taste 

cells) 
- NA - - 1 - NA - - 

Lingual minor salivary glands - - - - - 4 - - 4 

Parotid salivary glands - - - - - - - - - 

Mandibular salivary glands - - - - - - - - - 

Facial muscle - - - - 1 5 - - - 

Muzzle skin - - - - 3 5 - - 3 

Table 1. Summary of anatomical distribution of rabies viral antigens in the peripheral nervous and non-nervous tissues of the head in mice 

infected with CVS-11, 1088-N0 and 1088-N30 viruses  

DPI: days post inoculation, NA: not available due to distortion/fragmentation, -: no antigen detected  
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 5 days PI 8 days PI 11 days PI 

Mouse No. VNA (IU/ml) Mouse No. VNA (IU/ml) Mouse No. VNA (IU/ml) 

1 0.55 1 1.35 1 2.83 

2 0.14 2 2.0 2 0.59 

3 0.4 3 3.35 3 18.21 

4 0.16 4 4.16 4 9.11 

5 0.25 5 0.71 5 0.92 

 Ave. 0.262  Ave. 1.929  Ave. 3.029 

Control 0.12 Control 0.2 Control 0.19 

Control 0.12 Control 0.2 Control 0.19 

Control 0.12 Control 0.2 Control 0.19 

 Ave. 0.12  Ave. 0.2  Ave. 0.19 

PI: post inoculation, IU: international units  

5 days PI 8 days PI 11 days PI 

Mouse No. VNA (IU/ml) Mouse No. VNA (IU/ml) Mouse No. VNA (IU/ml) 

1 1.54 1 8.7 1 7.98 

2 1.41 2 3.82 2 21.65 

3 0.35 3 12.86 3 51.45 

4 1.14 4 11.77 4 19.81 

5 3.08 5 2.27 5 0.92 

 Ave. 1.2169  Ave. 6.4793  Ave. 20.71 

Control 0.12 Control 0.2 Control 0.19 

Control 0.12 Control 0.2 Control 0.19 

Control 0.12 Control 0.2 Control 0.19 

 Ave. 0.12  Ave. 0.2  Ave. 0.19 

PI: post inoculation, IU: international units  

Table 2. The titer of viral neutralizing antibodies (VNA) of mice-infected with 1088-N0 

viruses detected by rabid fluorescent focus inhibition tests 

Table 3. The titer of viral neutralizing antibodies (VNA) of mice-infected with 1088-N30 

viruses detected by rabid fluorescent focus inhibition tests 
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Figure legends 

Figs. 1-4. Histology and immunohistochemistry of trigeminal ganglion of mice infected with 

1088-N0 viruses at 5 days PI. Nuclear pyknosis and cytoplasmic vacuolation (arrow, Fig. 3), 

and viral antigens (Figs. 2 and 4) were observed in ganglion neurons. 

Figs. 5-8. Histology and immunohistochemistry of trigeminal ganglion of mice infected with 

1088-N0 viruses at 8 days PI. Nuclear pyknosis, cytoplasmic shrinkage and swollen with Nissl 

substance dissolution (arrows, Fig. 7), and viral antigens (Figs. 6 and 8) were observed in 

ganglion neurons and their axonal and dendritic processes. 

Figs. 9-10. Trigeminal ganglion of mice infected with 1088-N0 viruses at 11 days PI. A small 

number of lymphocytes infiltrate throughout the ganglion (Fig. 9). Many ganglion neurons 

showed nuclear pyknosis and cytoplasmic shrinkage (arrows, Fig. 10). 

Fig. 11. Trigeminal ganglion of mice infected with 1088-N0 viruses at 11 days PI. LFB staining 

revealed a decrease density of myelinated nerve fibers and extensive axonal demyelination 

(asterisk), and degenerated ganglion neurons were pale because of depletion of Nissl substance 

(arrows). 

 Fig. 12. Trigeminal ganglion of mice infected with 1088-N0 viruses at 11 days PI. Anti-NF 

immunoreactivity revealed weak and irregular positive reaction, and diffusely loss of both 

small- and large-diameter axons (asterisk). 

Figs. 13-14. Trigeminal nerve of mice infected with 1088-N0 viruses at 11 days PI. Axonal 

degeneration, swollen myelin sheaths, myelin disintegration and vacuolization were observed 

(arrows, Fig. 14). 
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Figs. 15-16. Trigeminal nerve of mice infected with 1088-N0 viruses at 11 days PI. LFB 

staining revealed a decrease density of myelinated nerve fibers and extensive axonal 

demyelination. 

Figs. 17-18. Trigeminal nerve of mice infected with 1088-N0 viruses at 11 days PI. Anti-NF 

immunoreactivity revealed weak and irregular positive reaction of axons. 

Figs. 19-22. Histology and immunohistochemistry of trigeminal ganglion of mice infected with 

CVS-11 viruses at 9 days PI. Nuclear pyknosis, cytoplasmic shrinkage and swollen with Nissl 

substance dissolution (arrows, Fig. 21), and viral antigens (Figs. 20 and 22) were observed in 

many ganglion neurons and their axonal and dendritic processes. 

Figs. 23-24. Histology and immunohistochemistry of the retina of mice infected with CVS-11 

viruses at 7 days PI. There was no morphological changes were observed in the retina (Fig. 23) 

and lens (asterisk). Viral antigens were detected in the ganglion cells and their axonal processes 

in the inner plexiform layer (Fig. 24). 

Figs. 25-26. Histology and immunohistochemistry of the maxillary nerve (M) and nasolacrimal 

duct (asterisk) of mice infected with 1088-N0 viruses at 11 days PI. The maxillary nerve 

revealed mild to moderate axonal vacuolar degeneration. In nasolacrimal duct revealed mild to 

moderate infiltration of mononuclear inflammatory cells appeared in submucosa. In addition, 

the mucosal surface was slightly thickened and epithelial cells showed degenerative changes 

(arrow) and sloughed into the duct lumen admixed with numerous necrotic inflammatory debris 

(Fig. 25). Viral antigens were detected in the axons of maxillary nerve (arrows, Fig. 26). 

Fig. 27. Immunohistochemistry of tongue of mice infected with 1088-N0 viruses at 8 days PI. 

Viral antigens were detected in the lingual mucosa, circumvallate papillae and lingual minor 

salivary gland (asterisk). 
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Fig. 28. Immunohistochemistry of the lingual minor salivary glands of mice infected with 1088-

N0 viruses at 11 days PI. Viral antigens were detected in the cytoplasm of the serous acinar 

epithelium (arrows). 

Figs. 29-30. Histology and immunohistochemistry of the circumvallate papillae of mice infected 

with 1088-N0 viruses at 8 days PI. Cytoplasmic shrinkage and nuclear pyknosis (arrow, Fig. 29), 

and viral antigens were observed in taste cells (Fig. 30). 

Figs. 31-32. Histology and immunohistochemistry of the facial muscle of mice infected with 

1088-N0 viruses at 11 days PI. The facial muscle showed myofiber degeneration characterized 

by loss of cross-striations, hyalinized eosinophilic cytoplasm, intramuscular nerve fibers 

exhibited axonal degeneration, and occasional myoblasts were also seen (asterisk, Fig. 31). 

Viral antigens were detected in the intramuscular nerve fibers (Fig. 32). 

Fig. 33. Immunohistochemistry of the facial muscle of mice infected with 1088-N0 viruses at 8 

days PI. Viral antigens were detected in the cytoplasm of myoblasts. 

Figs. 34-35. Immunohistochemistry of the muzzle skin of mice infected with 1088-N0 viruses at 

11 days PI. Viral antigens were detected in the epithelial cells of epidermis, peripheral 

cutaneous nerve fibers and basal layer of the out root sheath of tactile hair follicles. 

Fig. 36. Immunohistochemistry of the muzzle skin of mice infected with 1088-N0 viruses at 11 

days PI. High magnification of Fig. 35. Viral antigens were detected in the epithelial cells of the 

epidermis. 
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Chapter 4 Pathological study on the central nervous system and peripheral tissues of ddY 

mice intramuscularly infected with street rabies virus (1088-N0 strain) 

 

Introduction 

Rabies is a fatal zoonotic disease caused by the rabies virus that affects all mammalian 

species [17]. An unexpected case of naturally acquired rabies infection in a chicken has been 

reported recently in India [4]. According to the World Health Organization, estimates 55,000 

human deaths of rabies were accounted every year worldwide and 34,500 of these deaths come 

from Asia [37]. Rabies virus is a neurotropic virus that initially targets the central nervous 

system (CNS), resulting in fatal encephalomyelitis, the histopathological changes observed in 

the CNS are typically relatively mild, showing varying degrees of mononuclear inflammatory 

cell infiltration of the leptomeninges, perivascular lymphocyte cuffing, microglial activation, 

and neuronophagia. However, a precise understanding of the invasion pathways from the 

periphery to the CNS remains poorly understood. It was hypothesized that the virus inoculated 

at the periphery entry to CNS only via a motor neuron through the neuromuscular junction [13, 

35]. However, some experimental studies have demonstrated that the virus migrates directly 

into the CNS via sensory nerve through nerve spindles and dorsal root ganglia sensory neurons 

after replication at the infection site [25, 36]. Neuroanatomical studies of neuronal cells infected 

by rabies virus following peripheral inoculation have shown that the virus disseminates in the 

CNS within axons by trans-synaptic propagation [8, 20, 35, 40].  

The street strains of rabies virus are highly neuroinvasive that isolated from naturally 

infected animals, and have incubation periods varying from 2 weeks to more than 1 year and 

variable clinical effects [38]. Within the CNS, this virus causes extensive dendritic injury and 

decreased number of dendritic spines in hippocampal neurons after intracranial inoculation in 
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the mouse [28]. Feng et al. [11] proposed that most of neurons in the brain of mice infected with 

attenuated rabies virus strain are intact and have few abnormalities in organelle structure, while 

infection with highly neurovirulent strain of street rabies virus showed marked neuronal damage 

and structural abnormalities. On the other hand, street rabies virus (canine rabies virus variant) 

does not cause damage to neurons in the brain in natural rabies vectors [12]. These observations 

indicate that the pathological changes observed in these experimental infection models greatly 

differ between the various virus strains studied. 

Previously, our laboratory used the CVS-11 strain of fixed virus for the study of rabies 

pathogenesis in mice [18, 19, 25]. However, infection with fixed rabies virus in the laboratory 

does not fully represent the pathogenesis in animals which infected with wild-type or street 

rabies virus under natural conditions. To obtain the more information about neuropathogenesis 

of rabies in mice, in this study, street rabies virus (1088-N0 strain) was inoculated into the right 

hind limb of ddY mice, and the primary target cells and the sequential involvement during 

infection in the peripheral tissues and CNS were investigated. 
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Materials and methods 

Virus, animals, and inoculations 

The filed isolated street rabies virus 1088-N0 strain 

The street rabies virus 1088-N0 strain was kindly provided by the Department of 

Microbiology, Faculty of Medicine, Oita University (Oita, Japan). The parental virus of this 

strain was isolated from a woodchuck in the Centers for Disease Control in Atlanta, U.S.A. was 

obtained from the Yale Arbovirus Unit, Yale University, and was replicated in mouse 

neuroblastoma C1300 (NA) cells as previously described [39]. The 1088-N0 was passaged in 

mouse brain for 2 generations. The genomic sequence analyzed by Department of Microbiology, 

Faculty of Medicine, Oita University observed on the surface glycoprotein (G protein) of 1088-

N0 have two potential sequons in the N-glycosylation sites, Asparagine (Asn) at positions 37, 

319 (Asn37, Asn319) [39]. Twenty-four 6-week-old female ddY mice were purchased from 

Kyudo Co., Ltd., (Saga, Japan), 15 mice were inoculated intramuscularly (right triceps surae 

muscle) with viral dose of 106 plaque-forming units suspended in phosphate-buffered saline 

(PBS, pH 7.4) and nine uninfected control mice were inoculated intramuscularly with PBS 

alone. All experiments were performed in level-3 biosafety laboratories according to the 

guidelines for animal experiments with the approval of the ethics committee of Oita University. 

Necropsy and preparation of tissue sections 

All experimentally inoculated mice were observed daily for neurological conditions. The 

mice were sacrificed at 5, 8, and 11 days post-inoculation (PI) – five mice per day and their sera, 

and brain, spinal cord and muscle were sampled. It was subjected to 3 mice as a negative control 

in any of the groups. Each mouse was anesthetized with an inhalation anesthetic (isoflurane) 

and perfused intracardially with 10-15 ml of PBS, followed by fixed with 10% neutral buffered 
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formalin. The brain, spinal and muscle samples were removed and postfixed in 10% neutral 

buffered formalin at room temperature (RT) for less than 24 hours. The spinal samples were 

decalcified in K-CX (Fujisawa, Pharmaceutical Co., Ltd., Osaka, Japan) solution at RT for 12 

hours, and then washed in running tap water for 12 hours. Coronal sections of the brains at the 

positions of olfactory bulb, forebrain, mammillary body and pons and transverse sections of 

spinal cords at the cervical (C3-C4), thoracic (T1-T3), lumbar (L1-L2), and sacral (S1-S3) 

vertebrae were prepared. For routine histological evaluation, tissues samples were embedded in 

paraffin wax, serially sectioned (3 μm thickness), and mounted on glass slides and dried on a 

slide dryer machine at 40°C for overnight. Serial sections were then subjected to haematoxylin 

and eosin, and luxol fast blue staining, to immunohistochemistry and to in situ terminal 

deoxynucleotidyl-transferase-mediated (dUTP) nick end labeling (TUNEL) assays. 

Staining with hematoxylin and eosin (HE) 

The sections were stained with hematoxylin and eosin for general histopathological 

examination. 

Protocol 

 Paraffin was removed from the sections by a series of xylene and ethanol rinses. Tissue 

sections were rinsed in distilled water for 5 minutes and stained with hematoxylin solution for 3 

minutes, rinsed in running tap water for 5 minutes and stained with eosin solution  for 5 minutes, 

rinsed in distilled water for three times and dehydrated through a series of ethanol and xylene. 

The sections were then mounted in microscopy mounting medium. 

Staining with luxol fast blue (LFB) 

The sections were stained with LFB for myelin or myelinated axons examination. 
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Protocol 

Paraffin was removed from the sections by a series of xylene and ethanol rinses. The 

tissue sections were rinsed in distilled water for 5 minutes, and then sections were immersed in 

0.005% acetic acid solution in 95% ethyl alcohol at room temperature for 5 minutes. Place 

sections in 0.1% LFB solution for 16 hours in a 60°C oven, rinse off excess strain in 95% ethyl 

alcohol, rinse briefly in distilled water, sections were differentiated in 0.05% lithium carbonate 

solution for 15-20 seconds, followed by a final rinse in distilled water. After checking for 

completion of differentiation under the microscope, sections were counterstained in cresyl violet 

solution for 1 minute, rinse again in distilled water for 5 minutes, and followed by dehydrated 

through a series of ethanol and xylene. The sections were mounted in microscopy mounting 

medium. 

Immunohistochemistry 

2. For detection of the rabies virus antigens in tissues  

The sections were stained using the streptavidin-biotin-peroxidase complex method with 

rabbit anti-phosphoprotein (P) antibodies. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated for the activation of antigen with 

0.25% trypsin at room temperature for 30 minutes. After this treatment, sections were washed 

three times for 5 minutes in distilled water. After washing, to removed endogenous peroxidase 

activity the sections were immersed with 0.3% H2O2 in methanol for 60 minutes; then they were 

washed three times for 5 minutes in distilled water once again. The sections were treated with 

10% normal goat serum (Nichirei Biosciences, Tokyo, Japan) for 60 minutes to block non-
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specific reaction. Sections were then incubated with primary antibody for overnight at 4°C in a 

humidified chamber. Primary antibody was diluted 1:1200. After incubation with primary 

antibody, sections were washed three times for 5 minutes in phosphate buffer saline (PBS, pH 

7.4) and incubated for 30 minutes at room temperature with the biotinylated anti-rabbit IgG 

(Nichirei Biosciences) as a secondary antibody. Sections were again washed three times for 5 

minutes in PBS; then incubated for 30 minutes in room temperature with peroxidase-

streptavidin enzyme (Nichirei Biosciences) for 30 minutes, washed in PBS three times for 5 

minutes. Finally, sections were visualized using 3-3’-diaminobenzidine tetrachloride substrate 

(DAB substrate; DAKO, Kyoto, Japan), followed by rinsing in distilled water. The sections 

were counterstained with hematoxylin, and rinsing in running tap water again for 5 minutes. The 

sections were then dehydrated and mounted in microscopy mounting medium. Negative control 

was processed with rabbit serum instead of primary antibody. 

2. For detection of microglia 

The sections were stained using the polymer-based immunohistochemical method with 

rabbit anti-ionized calcium-binding adaptor molecule 1 antibodies (Iba1, Wako Ltd., Osaka, 

Japan) for detection of microglia. 

Protocol 

The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with 10 mM sodium citrate buffer (pH 6.0) in a water bath at 95°C for 30 minutes; then 

they were rinsed in distilled water with three changes of 5 minutes each. Incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences, Japan) for 60 
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minutes at room temperature, followed by incubation with the primary antibody for overnight at 

4°C in a humidified chamber. Primary antibody was diluted 1:500. After incubation with the 

primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), and then 

incubated for 30 minutes at room temperature with the anti-rabbit IgG (Nichirei Biosciences) as 

a secondary antibody. Sections were again washed three times for 5 minutes in PBS; then 

incubated with peroxidase-streptavidin enzyme (Nichirei Biosciences) for 30 minutes at room 

temperature, washed in PBS three times for 5 minutes. Finally, sections were visualized using 

DAB substrate, followed by rinsing in distilled water. Sections were counterstained with 

haematoxylin, and washed again in running tap water for 5 minutes. Slides were then 

dehydrated and mounted in microscopy mounting medium. 

3. For detection of T lymphocytes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD3 antibodies (DAKO, Kyoto, Japan) for detection of T lymphocytes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences, Japan) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 60 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

Primary antibody was diluted 1:50. After incubation with the primary antibody, sections were 

rinsed in PBS (three changes, 5 minutes each), then incubated for 30 minutes at room 
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temperature with the Envision + System Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in 

PBS (three changes, 5 minutes each) once again. Finally, sections were visualized using DAB 

substrate, followed by rinsing in distilled water. The sections were counterstained with 

hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium. 

4. For detection of B lymphocytes 

The sections were stained using the polymer-based immunohistochemical method with 

polyclonal rabbit anti-CD20 antibodies (Spring Bioscience, Fremont, USA) for detection of B 

lymphocytes. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. The sections were treated with Histofine® pH 9.0 (Nichirei 

Biosciences) for activation of antigens by microwaving at 750W for 5 minutes; then were 

washed in distilled water with three changes of 5 minutes each. After washing, incubation for 10 

minutes in 3% H2O2 in methanol to removed endogenous peroxidase activity, and the sections 

were rinsed in distilled water (three changes, 5 minutes each). To block non-specific reaction, 

the sections were treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes, 

followed by incubation with the primary antibody for overnight at 4°C in a humidified chamber. 

After incubation with the primary antibody, sections were rinsed in PBS (three changes, 5 

minutes each), then incubated for 30 minutes at room temperature with the Envision + System 

Labelled Polymer-HRP anti-rabbit (DAKO), rinsed in PBS (three changes, 5 minutes each) once 

again. Finally, sections were visualized using DAB substrate, followed by rinsing in distilled 

water. The sections were counterstained with hematoxylin, and rinsing in running tap water 
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again for 5 minutes. The sections were then dehydrated and mounted in microscopy mounting 

medium. 

5. For detection of nerve fibers 

The sections were stained using the polymer-based immunohistochemical method with 

monoclonal mouse anti-neurofilament protein antibodies (NF, DAKO, Kyoto, Japan) for 

detection of nerve fibers. 

Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, the sections were treated for the activation of 

antigens with Proteinase-K at room temperature for 30 minutes; then they were rinsed in 

distilled water with three changes of 5 minutes each. Incubation for 10 minutes in 3% H2O2 in 

methanol to removed endogenous peroxidase activity, and the sections were rinsed in distilled 

water (three changes, 5 minutes each), followed by incubation with the primary antibody for 

overnight at 4°C in a humidified chamber. Primary antibody was diluted 1:100. After incubation 

with the primary antibody, sections were rinsed in PBS (three changes, 5 minutes each), then 

incubated for 30 minutes at room temperature with the Histofine® Simple Stain MAX-PO 

(Mouse) (Nichirei Biosciences) rinsed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 
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6. For detection of astrocytes 

The tissue sections were stained using the polymer-based immunohistochemical method 

with anti-glial fibrillary acidic protein antibody (GFAP; Nichirei Bioscience, Tokyo, Japan) for 

detection of astrocytes.  

Protocol 

The tissue sections were deparaffinized by a series of xylene and ethanol rinses, 

rehydrated, and washed twice with distilled water. To remove endogenous peroxidase, tissue 

sections were treated with 3% H2O2 in methanol for 15 minutes, and sections were then rinsed 

in distilled water (three changes, 5 minutes each). To block non-specific reaction, sections were 

treated with 10% normal goat serum (Nichirei Biosciences) for 30 minutes at room temperature, 

followed by incubation with the primary antibody at room temperature for 60 minutes in a 

humidified chamber. After incubation with the primary antibody, sections were rinsed in PBS 

(three changes, 5 minutes each), then incubated for 30 minutes at room temperature with 

Histofine® simple stain MAX-PO (Rabbit) (Nichirei Biosciences) as a secondary antibody, and 

then rinsed in PBS (three changes, 5 minutes each) once again. Finally, sections were visualized 

using DAB substrate, followed by rinsing in distilled water. The sections were counterstained 

with hematoxylin, and rinsing in running tap water again for 5 minutes. The sections were then 

dehydrated and mounted in microscopy mounting medium.  

Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end 

labeling (TUNEL) assay 

The sections were evaluated using TUNEL assay kit (ApopTag® Plug peroxidase In Situ 

Apoptosis Detection Kit, Millipore Corporation, Billerica, MA, USA) for detection of 

fragmented DNA of apoptotic cells. 
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Protocol 

 The sections were deparaffinized by a series of xylene and ethanol rinses, rehydrated, and 

washed twice with distilled water. After washing, sections were treated with Proteinase-K 

(DAKO) for 15 minutes at room temperature to activated antigens, rinsed in PBS (three changes, 

5 minutes each). Then, endogenous peroxidase activity was removed with 0.3% H2O2 in 

methanol for 15 minutes at room temperature, rinsed in PBS (three changes, 5 minutes each). 

After washing in PBS, sections were covered with 50 μl of the TUNEL reaction mixture, which 

containing terminal deoxynucleotidyl transferase (TdT) and fluorescein-dUTP, and incubated 

under a coverslip in a humidified chamber for 60 minutes at 37°C. The reaction was stopped by 

washing sections in PBS. Sections were then incubated with anti-digoxigenin peroxidase for 30 

minutes at room temperature. Then, washed in PBS (three changes, 5 minutes each) once again. 

Finally, sections were visualized using DAB substrate, followed by rinsing in distilled water. 

The sections were counterstained with hematoxylin, and rinsing in running tap water again for 5 

minutes. The sections were then dehydrated and mounted in microscopy mounting medium. 
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Results 

Clinical observations and gross findings 

Mice showed anorexia, emaciation, ruffled fur and hunched backs at 4 to 5 days after 

inoculation. Mice initially developed signs of rabies including uncoordinated limb movements, 

ataxia, and paralysis in the inoculated limb before developing into a bilateral hind limb paralysis 

at 5 days post-inoculation (PI). Paralysis was progressed to quadriparalysis, and subsequently 

mice became moribund state at 8 days PI. All infected mice died within 11 days PI after onset of 

symptoms. Conversely, normal control mice did not show any clinical symptoms within 11 days 

of intramuscular inoculation. No gross findings were observed at necropsy in any of the mice 

throughout the experimental period. 

Histopathological examination 

The spinal cord and dorsal root ganglion 

At 5 days PI, mild degeneration of neurons in the spinal cord and dorsal root ganglion 

was observed. Neuronal degeneration was characterized by swollen (rounded) and lightly 

stained cytoplasm with a dissolution of the Nissl substance (Figs. 1, 3). Some affected ganglion 

neurons exhibited necrotic changes, characterized by condensation of nuclear chromatin, 

nuclear pyknosis, and cytoplasmic shrinkage. In addition, a small number of inflammatory 

mononuclear cells composed mainly of lymphocytes were observed surrounding blood vessels 

(perivascular cuffing), under the leptomeninges of spinal cords and under epineurium of dorsal 

root ganglia. 

At 8 days PI, the numbers of degenerated neurons were significantly increased in the 

spinal cords and dorsal root ganglia. Most affected ganglion neurons showed swollen (rounded) 

or angular, pale, with reduction in or absence of Nissl substance, and some showed 



134 

 

hypereosinophilic, nuclear pyknosis, cytoplasmic shrinkage, and dispersed chromatin. Nuclei 

were central or slightly eccentric, and some contained clumped chromatin or undergoing 

karyorrhexis. Mild lymphocytic infiltration was observed around small vessels in the spinal 

cords (Fig. 5) and scattered throughout dorsal root ganglia. Large activated microglial cells and 

gliosis were scattered throughout the parenchyma of the spinal cord. In addition, axonal 

degeneration, swollen myelin sheaths, minimal myelin disintegration and vacuolization were 

observed in dorsal root fibers (Figs. 7, 9).  

At 11 days PI, the numbers of degenerated neurons were significantly increased in the 

spinal cords and dorsal root ganglia when compared to 8 days PI mice. Axonal degeneration, 

swollen myelin sheaths, minimal myelin disintegration and vacuolization were observed in 

dorsal root fibers. In the spinal cord, moderate lymphocyte infiltration was observed around the 

small blood vessels and under the leptomeninges (Fig. 41), and large activated microglial cells 

and gliosis were scattered throughout the parenchyma. On the other hand, no histological 

changes were observed in the nerve fibers of the ventral root throughout the experiments. 

The brain 

 At 5 days PI, mild inflammatory cells composed of lymphocytes were observed 

throughout under the leptomeninges of the cerebrum and cerebellum. No histological changes 

were observed in pyramidal neurons of any area, including the cerebral cortex, thalamus, 

medulla oblongata, and cerebellum. 

 At 8 days PI, the nuclear pyknosis and fragmentation, cytoplasmic shrinkage, Negri body-

like inclusions were first seen in the pyramidal neurons of the cerebral cortex (Figs. 11, 12, 46, 

48), medulla oblongata (Figs. 16, 18). Lesser changes were observed in the neurons of the 

cerebellum Purkinje cells (Fig. 20), and thalamus neurons. In addition, moderate inflammatory 
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cells composed of lymphocytes were observed under the leptomeninges and around the small 

vessels (Fig. 50), and the majority of lymphocytes showed nuclear fragmentation and pyknosis. 

 At 11 days PI, the numbers of degenerated neurons were significantly increased 

particularly in the pyramidal cells of the cerebral cortex, medulla oblongata, hypothalamus, 

cerebellum Purkinje cells and thalamus neurons. In addition, moderate infiltration of 

lymphocytes were observed under the leptomeninges (Fig. 40), around blood vessels (Fig. 42) 

and in the cerebral ventricles (Fig. 44), and large activated microglial cells and gliosis were 

found in multiple areas, including the cerebral cortex, thalamus, medulla oblongata and 

cerebellum. Frequently, the majority of lymphocytes showed nuclear fragmentation and 

pyknosis. 

Immunohistochemical examination 

Detection of rabies virus antigens by anti-P antibodies 

 At 5 days PI, Viral antigens were initially detected in muscles and intramuscular nerve 

fibers at site of inoculation, and neurons of the dorsal root ganglia (Figs. 2, 4) and spinal cord 

(motor neurons in the ventral horns). Virus positive neurons were occasionally observed in the 

red nuclei, medulla oblongata and cerebral cortex (M1 motor area, Fig. 13). 

 At 8 days PI, viral antigens were widely distributed in the neurons throughout the brain 

(Fig. 14), including cerebral cortex, thalamus, hippocampus, medulla oblongata (Figs. 17, 19) 

and cerebellum Purkinje cells and their dendrites (Fig. 21). Virus positive neurons were also 

observed particularly in the sensory neurons of the dorsal horns (Fig. 6), dorsal root ganglia and 

their nerve fibers, but no viral antigens were found in the ventral root fibers (Figs. 8, 10). 

 At 11 days PI, virus positive neurons were more numerous and widely distributed 

throughout the brain (Fig. 15), including cerebral cortex, thalamus, hippocampus, medulla 
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oblongata, and cerebellum Purkinje cells. In addition, antigen positive reactions were found in 

the sensory neurons in the dorsal horns and dorsal root ganglia neurons. 

 The localization of viral antigens in the cerebral cortex, hippocampus, thalamus, medulla 

oblongata, cerebellum, spinal cord, dorsal root ganglion and muscle were summarized in Table 

1, and also the anatomical distribution of viral antigens in mouse brain coronal section, 

including cerebrum, hippocampus and thalamus was showed in schematic data. 

Detection of microglia by anti-Iba1 antibodies 

 At 5 days PI, rod-like small microglia were scattered throughout the spinal cord (Figs. 22, 

23), brain (Figs. 28, 29) and dorsal root ganglia. In dorsal root ganglia, microglia were seen 

predominantly around degenerated neurons. At 8 and 11 days PI, the number of microglia 

significantly increased and their morphology changed from rod to ramified or amoeboid, and 

scattered throughout the spinal cord (Figs. 24-27) and brain (Figs. 30-33). 

Detection of astrocytes by anti-GFAP antibodies 

 At 5 days PI, astrocytes were scattered throughout the parenchyma, under the 

leptomeninges, around the small blood vessels and the central canal of the brain and spinal cord 

(Figs. 34, 35). At 8 and 11 days PI, the number of astrocytes significantly increased and 

scattered throughout the parenchyma of the brain and spinal cord (Figs. 36-39). In addition, 

astrocytes were activated in the brain and spinal cord, and their morphology changed. The 

process of fibrous astrocytes elongated from the leptomeninges to the deep parenchyma and 

many large protoplasmic astrocytes were observed concurrently in the parenchyma of the spinal 

cord, particularly around necrotic neurons. 
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Detection of lymphocytes by anti-CD3 and anti-CD20 antibodies 

 At 5 days PI, small numbers of CD3-positive T lymphocytes appeared in the dorsal root 

ganglion, under the leptomeninges and around blood vessels and ventricles of the brain and 

spinal cord. At 8 and 11 days PI, the number of CD3-positive T lymphocytes significantly 

increased and scattered throughout the parenchyma of the brain and spinal cord, particularly 

around blood vessels (Fig. 43) and central canal of the brain (Fig. 45). On the other hand, 

CD20-positive B lymphocytes were not detected in the CNS throughout the experimental period.  

Detection of apoptotic cells by TUNEL assays 

 At 5 days PI, small numbers of TUNEL-positive cells appeared in the cerebral cortex, 

thalamus and medulla oblongata. At 8 and 11 days PI, the numbers of TUNEL-positive cells 

were significantly increased, and were detected widely distributed in spinal cord and brain, 

particularly in cerebral cortex (Figs. 47, 49), hippocampus, medulla oblongata and thalamus, 

and few positive cells found in dorsal root ganglion. Staining was prominent in lymphocytes 

under the leptomeninges and in the perivascular area (Fig. 51), and glial cells in the cerebral 

cortex (Figs. 52, 53) that exhibited apoptotic features, such nuclear fragmentation and pyknosis. 

TUNEL-positive neurons were rarely seen in the cerebral cortex, thalamus and medulla 

oblongata, but TUNEL-positive signals were not detected in the spinal neurons and dorsal root 

ganglion neurons in spite of strong immunostaining for the viral antigen.  

The mean of the number of glial cells around degenerated neurons, lymphocytes and 

TUNEL-positive cells in multiples areas (cerebral cortex, thalamus, hippocampus, medulla 

oblongata) of brain and cervical, thoracic, lumbar, sacral spinal cords at time course was 

summarized in Table 2. 
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Detection of nerve fibers by anti-neurofilament protein (NF) and for identification of the 

myelin sheath of the myelinated nerve fibers by luxol fast blue (LFB) staining 

At 8 and 11 days PI, anti-NF immunoreactivity showed weak and irregular positive 

reaction, and diffusely loss of both small- and large-diameter axons in the in the dorsal root 

fibers (Figs. 54, 55). In addition, LFB staining revealed a decrease density of myelinated nerve 

fibers and extensive axonal demyelination of the dorsal root ganglion and dorsal root of spinal 

nerve, while the ventral root fibers appeared intact (Figs. 56-59). 
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Discussion 

 In this study, ddY mice that were inoculated intramuscularly with the street rabies virus 

strain 1088-N0 isolated from a woodchuck exhibit paralytic signs and the pathological changes 

are more severe in the dorsal root ganglion neurons than those found in the nerve cells of the 

brain and spinal cord. Therefore, it was suggested that the possibility that the selective 

vulnerability of dorsal root ganglion neurons and their nerve fibers in mice infected with 1088 

virus deeply participated in clinical signs.  

 The centripetal propagation of rabies virus from peripheral nerve to reach CNS have been 

described occurs only via the motor route by binding to the nicotinic acetylcholine receptors at 

the motor endplates [7, 8, 13, 21, 22, 34]. On the other hand, Park et al. [25] and Valandia-

Romero et al. [36] reported evidence of replication in the muscle spindles and dorsal root 

ganglia, suggesting that the virus preferentially entered the CNS through sensory nerve fibers. 

The present study, viral antigens were initially detected in the hind limb muscle at the site of 

inoculation and dorsal root ganglion neurons, and were then detected in motor neurons in the 

ventral horns, medulla oblongata neurons, red nuclei, and pyramidal cells in the cerebral cortex 

(motor M1 area). These results suggested that 1088 virus ascended the CNS in a centripetal 

propagation via mainly afferent fibers at early stage of infection and move to cerebral cortex 

using descending spinal tract. 

 Recently, previous studies have reported that the neurons in the brain of mice-infected 

with rabies virus can secrete chemokines/cytokines such as gamma interferon (IFN-γ)-inducible 

protein 10 (CXCL10) that lead to the activation of microglia and astrocytes, infiltration of 

inflammatory cells, and enhancement of blood-brain barrier permeability [6]. In addition, 

activated astrocytes and microglia cells can also produce CXCL10, and responsible as a 

chemoattractant for activated T lymphocytes [9]. In the present study, virus-infected neurons in 
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spinal cord and brain were first detected at 5 days PI as well as the number of activated 

microglia cells, astrocytes and inflammatory T lymphocytes increased as the infection 

progressed. These findings suggested that virus-infected neurons release a chemoattractant 

chemokines for activated microglia cells and astrocytes, as well as attracting infiltration of 

inflammatory T lymphocytes into the CNS. 

 Iba1 is a microglial surface marker, and increased staining for Iba1 can indicate 

microglial activation in the CNS [1]. Microglia changes their morphological forms such as 

ramified (resting) and amoeboid (activated) types after CNS injury [26, 30]. Activated microglia 

produce various proinflammatory cytokines and chemokines, such as interleukin (IL)-1, 

CXCL10, tumor necrosis factor alpha (TNF-α), matrix metalloproteinases (MMPs), superoxide 

and nitric oxide (NO) [26], which mediate nerve cell death both directly and indirectly via the 

induction of NO and free radicals [15], and also NO-induced cytotoxicity via oxidative injury 

result in immunosuppression and immunopathology [2]. In addition, MMPs are secretory 

products of activated microglia, which can contribute to breakdown of the blood-brain barrier, 

leukocyte emigration into the nervous system, and tissue destruction [26]. IL-1 and TNF-α were 

released by microglia and macrophages, and play an important role in coordinating the 

inflammatory response associated with rabies encephalopathy [24]. In this study, the number of 

microglia positive to anti-Iba1 antibody increased significantly from 8 days PI and their 

morphological changed to a ramified to amoeboid form in the areas where many virus-infected 

cells and necrotic cells were present. Therefore, it was suggested that activated microglia and 

their inflammatory cytokines related to neuronal necrosis in the spinal cord and brain. 

 Within the CNS, astrocytes play potential roles in neuroprotective functions, synaptic 

transmission, and provide structural, metabolic and trophic support for neurons. As might be 

expected from their wide range of functions, both beneficial and detrimental effects are 

attributed to activate astrocytes [3, 10, 29]. Furthermore, astrocytes activated by chemokines 
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that released from infected nerve cells as above mentioned [6]. In the present study, fibrous and 

protoplasmic astrocytes increased in the brain and spinal cord from 8 days PI. Subsequently, the 

numbers of necrotic neurons increased as disease progressed. These findings are consistent with 

a previous study of our laboratory in which mice were inoculated with fixed rabies virus (CVS-

11 strain) intramuscularly, we observed that numerous spinal neurons underwent necrosis and 

that number of astrocytes increased as the infection progressed [18]. Therefore, it was suggested 

that the number of astrocytes increased and their morphological changed in response to neuronal 

cell death by necrosis. 

 Apoptosis plays a protective role in eliminating virus-infected cells. There are many 

different pathways that initiate apoptosis [25, 27, 32], of which Fas/Fas ligand apoptotic 

partway is one of the most important. In the present study, a very few virus-infected nerve cells 

in the cerebral cortex, thalamus and medulla oblongata were positive for TUNEL staining. 

However, virus-infected dorsal root ganglion neurons, spinal neurons, and most of nerve cells in 

the other areas of brain exhibited fragmentation and cytolysis, but these cells were negative 

against TUNEL. These findings indicate that most of virus-infected nerve cells died by necrosis. 

These aspects are partially in accordance with those of previous reported by Park et al. [25], in 

which mouse spinal neurons and dorsal root ganglion neurons were more resistant to apoptosis 

than cerebellum Purkinje cells after CVS-11 strain infection. In addition, in chapter 1, we 

demonstrated that virus-infected ganglion neurons in the mandibular gland of rabid dogs did not 

underwent apoptosis. Therefore, it was suggested that absence of neuronal apoptosis in mice 

infected by street rabies virus may promote prolonged infection within dorsal root ganglion 

neurons and continuously supply virus to the spinal cord and subsequent propagates 

centripetally to the brain. 

 T lymphocytes play an important role in cellular immunity by blocking viral spread and 

clearing rabies virus from the CNS [5, 14, 23]. Nevertheless, infiltration of T lymphocytes may 
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release of cytotoxic cytokines such as IFN-γ to kill virus-infected cells [17]. In this study, the 

CD3-positive T lymphocytes were present in the brain, spinal cord and dorsal root ganglion. 

These findings suggested that cell-mediated immune response was important for the clearance 

of rabies virus from the CNS. In addition, infiltrating T lymphocytes were positive for TUNEL 

staining, similar to results reported in experimental infection of mice and natural infection of 

dogs and humans by a street rabies virus strain [16, 31, 32]. Thus, it was suggested that street 

rabies virus may trigger apoptosis in inflammatory cells through the Fas/Fas ligand pathway, 

thereby interfering with release of cytotoxic cytokines and preventing cell lysis [32]. 

 In conclusion, these results suggested that 1088-N0 virus ascended the spinal cord via 

mainly afferent fibers and progress to cerebral cortex using descending spinal tract. Furthermore, 

virus-infected nerve cells died by necrosis, whereas T lymphocytes died by apoptosis. This was 

accompanied by increased numbers and morphological changes of glial cells associated with the 

pathogenesis of the experimental rabies.  
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Anatomical Area 
5 days PI 

(n=5) 

8 days PI 

(n=5) 

11 days PI 

 (n=5) 

Brain    

Cerebral cortex + +++++ +++++ 

Hippocampus - ++ ++++ 

Thalamus + +++++ +++++ 

Medulla oblongata + ++++ ++++ 

Cerebellum  

(Purkinje cells) 
- ++++ ++++ 

Spinal cord    

Cervical + ++ ++ 

Thoracic + ++ ++ 

Lumbar + ++ ++ 

Sacral - - + 

Dorsal root ganglion    

Cervical - + + 

Thoracic + + + 

Lumbar + + + 

Sacral + + + 

Other    

Muscleξ + + + 

Intramuscular peripheral nerve# + + + 

Table 1. Anatomical distribution of 1088-N0 virus antigens in mice infected intramuscularly 

 

Anatomical Area 
5 days PI 

(n=5) 

8 days PI 

(n=5) 
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 (n=5) 
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Cerebral cortex + +++++ +++++ 

Hippocampus - ++ ++++ 

Thalamus + +++++ +++++ 

Medulla oblongata + ++++ ++++ 

Cerebellum  

(Purkinje cells) 
- ++++ ++++ 

Spinal cord    

Cervical + ++ ++ 

Thoracic + ++ ++ 

Lumbar + ++ ++ 

Sacral - - + 

Dorsal root ganglion    

Cervical - + + 

Thoracic + + + 

Lumbar + + + 

Sacral + + + 

Other    

Muscleξ + + + 

Intramuscular peripheral nerve# + + + 

 Table 1. Anatomical distribution of 1088-N0 virus antigens in mice infected intramuscularly 

-: Negative, +: positive ≤ 10 cells, ++: 11-30 cells, +++: 31-50 cells, ++++: 51-100 cells, +++++: >101 cells, PI: post inoculation, ξ: 

right triceps surae muscle, #: intramuscular peripheral nerves around infected muscle. 

 

Anatomical Area 
5 days PI 

(n=5) 

8 days PI 

(n=5) 

11 days PI 

 (n=5) 

Brain    

Cerebral cortex + +++++ +++++ 

Hippocampus - ++ ++++ 

Thalamus + +++++ +++++ 
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Cerebral cortex, thalamus, medulla and 

hippocampus 
5 days PI (n=5) 8 days PI (n=5) 11 days PI (n=5) Control 

Iba1 974 1,732 2,045 528 

GFAP 67 272 454 59 

CD3 24 76 294 0 

CD20 0 0 0 0 

TUNEL 0 47 156 0 

 Spinal cord (C, T, L, S)     

Iba1 37 124 148 29 

GFAP 16 21 36 15 

CD3 15 45 83 0 

CD20 0 2 3 0 

TUNEL 0 36 67 0 

Table 2. The mean of the number of glial cells, lymphocytes and TUNEL-positive cells in five mice infected with 1088-N0 virus  

 

PI: post inoculation, Iba1: microglial cell (ramified or amoeboid microglial cells type only counted), GFAP: astroglial cell (protoplasmic 

astroglial cells type only counted), CD3: T lymphocyte, CD20: B lymphocyte, C: cervical, T: thoracic, L: lumbar, S: sacral. 
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Figure legends 

Figs. 1-4. Histology and immunohistochemistry of lumbar dorsal root ganglion at 5 days PI. 

Degenerated ganglion neurons (arrows, Fig. 3) were observed. Viral antigens were found in the 

cytoplasm of ganglion neurons (Figs. 2 and 4). 

Figs. 5-6. Histology and immunohistochemistry of thoracic spinal cord at 8 days PI. Small 

numbers of lymphocytes were observed surrounding blood vessels (arrows, Fig. 5). Viral 

antigens were found mainly in the sensory neurons of the dorsal horns (Fig. 6). 

Figs. 7-10. Histology and immunohistochemistry of cervical dorsal root ganglion and their 

fibers at 8 days PI. The number of degenerated ganglion neurons increased (Fig. 7) and some 

axon exhibited vacuolated changes (arrows, Fig. 9). Viral antigens were observed in the 

cytoplasm of ganglion neurons and dorsal root fibers (arrows, Figs. 8 and 10), whereas no viral 

antigens detected in ventral root fibers. 

Figs. 11-12. Histology of cerebral cortex (M1 motor area) at 8 days PI. Hypereosinophilic 

cytoplasm and nuclear pyknosis were observed in pyramidal neurons (arrow heads, Fig. 12). 

Figs. 13-15. Brain. At 5 days PI, viral antigens were observed in the pyramidal neurons of 

cerebral cortex (M1 motor area) (inset, Fig. 13). At 8 (Fig. 14) and 11 (Fig. 15) days PI, viral 

antigens were widely distributed throughout the brain. Immunohistochemistry. 
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Figs. 16-19. Histology and immunohistochemistry of medulla oblongata at 8 days PI. Nuclear 

pyknosis and cytoplasmic shrinkage in the pyramidal neurons were observed (arrows, Fig. 18). 

Viral antigens were found in the cytoplasm of pyramidal neurons and their axons throughout 

tissue (Figs. 17 and 19). 

Figs. 20-21. Histology and immunohistochemistry of cerebellum at 8 days PI. Necrotic 

Purkinje cells were observed (arrows, Fig. 20). Viral antigens were found in the cytoplasm of 

Purkinje cells and their axons in the molecular layer (Fig. 21). 

Figs. 22-27. Lumbar spinal cord. Many Iba1-positive rod-like small microglial cells were 

detected in the gray matter of spinal cord at 5 days PI (arrows, Figs. 22 and 23), and they 

changed their morphology to be ramified or amoeboid shapes at 8 days PI (arrows, Figs. 24 and 

25) and 11 (arrows, Figs. 26 and 27) days PI. Immunohistochemistry. 

Figs. 28-33. Cerebrum. Many Iba1-positive rod-like small microglial cells were detected in the 

cerebral cortex at 5 days PI (arrow heads, Figs. 28 and 29), and they changed their morphology 

to be ramified or amoeboid shapes at 8 (arrows, Figs. 30 and 31) and 11 (arrows, Figs. 32 and 

33) days PI. Immunohistochemistry. 

Figs. 34-39. Lumbar spinal cord. At 5 days PI, GFAP-positive astrocytes elongated to reach the 

deep white matter (arrow, Figs. 34 and 35). Many protoplasmic astrocytes were observed in the 
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gray matter at 8 days PI (arrows, Figs. 36 and 37), and they changed their morphology to a 

ramified shape at 11 days PI (arrows, Figs. 38 and 39). Immunohistochemistry. 

Fig. 40. Cerebrum. Small numbers of lymphocytes were present under the leptomeniges at 11 

days PI (arrows). 

Fig. 41. Cervical spinal cord. Small numbers of lymphocytes were present under the 

leptomeniges at 11 days PI (arrows). 

Fig. 42. Cerebral cortex. Small numbers of lymphocytes were present around blood vessel at 11 

days PI (arrows). 

Fig. 43. Cerebral cortex. At 11 days PI, CD3-positve T lymphocytes appeared around blood 

vessel at 11 days PI. Immunohistochemistry. 

Fig. 44. Cerebrum. Small numbers of lymphocytes were observed around cerebral ventricle 

(asterisk) at 11 days PI. 

Fig. 45. Cerebrum. At 11 days PI, CD3-positve T lymphocytes appeared around cerebral 

ventricle (asterisk) at 11 days PI. Immunohistochemistry. 

Figs. 46-51. Cerebral cortex (M1 motor area). Histology and TUNEL assays at 8 days PI. 

Hypereosinophilic cytoplasm and nuclear pyknosis was observed in glial cells (Fig. 48) and 

lymphocytes around blood vessel (arrows, Fig. 50). Marked TUNEL staining was evident in 
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glial cells (arrows, Fig. 49) and lymphocytes around blood vessel (arrows, Fig. 51), but not in 

the pyramidal neurons. 

Figs. 52-53. Cerebral cortex (M1 motor area). TUNEL positive glial cells were more 

significantly observed at 11 days PI. 

Figs. 54-55. Sacral dorsal root ganglia at 11 days PI. Anti-NF immunoreactivity revealed weak 

and irregular positive reaction, and diffusely loss of both small- and large-diameter axons 

(asterisk, Fig. 55). 

Figs. 56-59. Sacral dorsal root ganglion and spinal nerve at 11 days PI. Fig. 56, dorsal root 

ganglion (1) and spinal nerve (2). LFB staining revealed a decrease density of myelinated nerve 

fibers and extensive axonal demyelination of the dorsal root ganglion (Figs. 57 and 58) and 

dorsal root of spinal nerve, whereas ventral root fibers appeared intact (asterisk, Fig. 59). 
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Schematic representation of the anatomical distribution of 1088-N0 virus antigens in mouse brain coronal sections 

 

                  5 days PI                                                      8 days PI                                                     11 days PI               I                               

 

                               No.16                                                              No.33                                                               No.50            

 

 

: Virus antigens 

 

 



155 

 



156 

 

 



157 

 

 



158 

 

 



159 

 

 



160 

 

 



161 

 

 



162 

 

 



163 

 

 



164 

 

 



165 

 

 



166 

 

Acknowledgements 

 Any significant milestone in one’s life is made successful by the contributions of many 

others along the way. The successful completion of this research is a significant milestone for 

me. I would like to commit that while writing this section I went through all the memories with 

sweats, tears, late nights, early mornings as well as the sweet memories full with words of 

appreciations, encouragements, achievements, success and happiness. I find it very difficult, 

rather lack words to express my feelings to the people who have provided me their immense 

help and support during my Ph.D. work. I would like to convey my special and heartiest thanks 

to some very important people without whom the journey of achieving my Ph.D. would have 

been impossible. 

 It is a privilege to express my sincere gratitude and deep appreciation to my major 

supervisor Associate Professor Dr. Chun-Ho Park, Laboratory of Veterinary Pathology, School 

of Veterinary Medicine, Kitasato University, Japan, for his valuable advices, helpful, guidance, 

encouragement, suggestions and intensive review. Dr. Park stimulated my interest in the field 

of pathology of rabies virus infection and improved my ability in writing. Furthermore, he was 

always my greatest role model for a pathologist, teacher, researcher and mentor. My 

dissertation would not have been possible without his constant guidance, assistance and support. 

I owe a lot of gratitude to him for always being there for me and I feel privileged to be 

associated with a person like him during my life. 

 I would like to express my sincere gratitude to Professor Dr. Toshifumi Oyamada and 

Assistant Professor Dr. Hitoshi Hatai, Laboratory of Veterinary Pathology, School of 



167 

 

Veterinary Medicine, Kitasato University, Japan, for their valuable advice, kindness, and 

helpfulness. 

 I would also like to acknowledge the invaluable help of Dr. Daria Llenaresas Manalo and 

the staff members of the Research Institute for Tropical Medicine, Department of Health, 

Philippines, for tissue collection of dogs and the permission to use these sample for my Ph.D. 

work. 

 I would also like to express my deepest appreciation to Mahanakorn University of 

Technology, Thailand, for providing me a scholarship throughout my doctoral program, 

especially, Associate Professor Dr. Jatuporn Kajaysri, Dean of Faculty of Veterinary Medicine, 

Mahanakorn University of Technology, Thailand, for giving me a great opportunity to study 

abroad in Japan. I would not have been here without his guidance and support. 

 I would also like to express my sincere gratitude to Assistant Professor Dr. Thanongsak 

Mamom, Associate Dean for Academic Affairs of Faculty of Veterinary Medicine, and Head of 

the Division of Veterinary Pathology, Mahanakorn University of Technology, Thailand, for his 

motivation, valuable suggestions and guidance throughout my times as both an undergraduate 

student and work life. 

 I would also like to express my sincere thanks to my Japanese teacher, Mr. Kunio 

Negishi for his attention to us, the students from abroad, and for his kindness and give me a 

precious help he has provided throughout my academic life in Japan.  

I would also like to thank Dr. Titaree Laoharatchatathanin and Dr. Duangjai 

Rieanrakwong for their suggestion, kindness, and helpfulness. 



168 

 

 I am also thankful to my colleagues, Mr. Kazunori Kimitsuki (Ph.D. student) and all the 

other members of the Laboratory of Veterinary Pathology, for their friendship, friendly 

atmosphere, and great help to me through my academic studies. 

 Special thanks are extended to Dr. Varat Vorabannarat and Dr. Pinkarn Chantawong for 

their everlasting encouragement and cheerfulness whenever I needed. 

 I am also indebted to all my experimental animals for their silent sacrifice, which bring 

me to succeed in my study. 

 Finally, I would like to acknowledge the people who mean world to me, my family. My 

family has always been a source of inspiration and encouragement. I wish to thank my parents, 

Mr. Siri and Mrs. Supattra Boonsriroj, whose love, teaching, foresight and values paved the 

way for a privileged education and support have brought me this far. I bow my head to my 

father for his generous support, invaluable blessings, and selfless but untold sacrifices for my 

better and bright future. I don’t imagine a life without their love and blessings. Thank you Dad 

and Mom, for showing faith in me and giving me liberty to choose what I desired. My gratitude 

is extended to my uncle, aunt, sister (Dr. Tidarat Tripipitsiriwat), brother-in-law (Dr. Kanin 

Tripipitsiriwat), and nephew for their affection, patience and understanding me in all my 

pursuits. I consider myself the luckiest in the world to have such a supportive family, standing 

behind with their love and support. I appreciate and love you all dearly. 

 

Hassadin Boonsriroj 

1 January 2016 


