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Abstruct 
 
    Rho small GTPases control cell morphology and motility through the 
rearrangement of actin cytoskeleton. ARHGAP22 is a member of Rac-specific GAP 
(FilGAP) family, and implicated in the regulation of tumor cell motility. However, 
little is known concerning the cellular localization and mechanism of regulation at 
the molecular level. Whereas FilGAP binds to FLNa and localizes to lamellae, we 
found that ARHGAP22 did not bind to FLNa. Forced expression of ARHGAP22 
induced enlarged vesicular structures containing the endocytic markers EEA1, Rab5, 
and Rab11. Coiled-coil domain of ARHGAP22 is responsible for targeting of 
ARHGAP22 to the vesicular structures. Endogenous ARHGAP22 is also co-localized 
with EEA1- and Rab11-positive endosomes but not with trans-Golgi marker TNG46. 
When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 is 
co-localized with Rac Q61L at membrane ruffles, suggesting that ARHGAP22 is 
translocated from endosomes to membrane ruffles to inactivate Rac. Forced 
expression of ARHGAP22 suppressed lamellae formation and cell spreading. 
Conversely, knockdown of endogenous ARHGAP22 stimulated cell spreading. Thus, 
the result may suggest that ARHGAP22 might controls cell morphology by 
inactivating Rac but its localization is not mediated by its interaction with FLNa.  
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Introduction 
 
    Rho family small GTPases (Rho GTPases) regulate many fundamental cellular 
processes including cell adhesion, migration, vesicle trafficking, and differentiation 
[1-5]. Because Rho GTPases are involved in the control of actin cytoskeleton and 
cell migration, they are playing an important role in development, immune response, 
and cancer metastasis [6,7,8].  
    RhoA and Rac1 are well-studied members of Rho GTPases [9]. Rac1 stimulates 
actin polymerization by activating downstream effectors such as PAK protein kinases 
and WAVE adaptor proteins. Activation of Rac1 induces formation of lamellae in 
front of migrating cells and cell spreading on extracellular matrixes (ECMs). RhoA is 
involved in the generation of contractile force through phosphorylation and 
activation of myosin II. Thus, RhoA stimulates contraction at the rear of migrating 
cells and formation of focal adhesion. It is well established that RhoA and Rac1 
antagonize each other and define the front-back of moving cells [10].  
    Rho GTPase functions as a molecular switch in cells. While GTP-bound active 
form stimulates downstream effectors, hydrolysis of GTP inactivates Rho GTPase. 
Therefore, they cycle between inactive GDP-bound state and active GTP-bound state. 
Two classes of proteins mainly regulate this cycle. Guanine nucleotide exchange 
factors (GEFs) activate Rho GTPase by catalyzing the exchange of GDP for GTP. 
While GTPase-activating proteins (GAPs) stimulate the intrinsic GTPase activity and 
inactivate them [11,12].  
    ARHGAP22 (also called RhoGAP2 and RhoGAP22) belongs to a family of 
RhoGAPs that includes FilGAP (ARHGAP24) and ARHGAP25 [13,14]. The 
domain structure of ARHGAP22 is similar to that of FilGAP. It contains 
pleckstrin-homology (PH) domain at its N-terminus, followed by GAP and 
coiled-coil (CC) domains. Recently, ARHGAP22 has been identified as a key 
mediator that suppresses Rac1 downstream of RhoA and involved in the amoeboid 
movement of melanoma cells in 3D environment [7,15,16,17]. Moreover, 
ARHGAP22 is phosphorylated downstream of Akt and the phosphorylation 
promotes binding to 14-3-3 protein [18,19]. We have shown that FilGAP binds to a 
widely expressed filamentous actin (F-actin) cross-linking protein Filamin A (FLNa) 
and FLNa binding targets FilGAP to the leading edge of the cell where it antagonizes 
Rac [13,14]. In FilGAP, an FLNa-binding site resides to C-terminal to the CC 
domain [20]. Although ARHGAP22 contains FLNa-binding consensus sequence at  
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its C-terminus [14], it is unclear whether ARHAGAP22 binds to FLNa. Moreover,  
localization of ARHGAP22 in mammalian cells is unknown.  
    In this study, we have studied the cellular distribution and function of 
ARHGAP22. We found that ARHGAP22 does not interact with FLNa. Moreover, we 
present the evidence that ARHGAP22 localizes at endosomes and is involved in 
down-regulation of Rac.  
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Material and Methods 
 
Plasmids 
    cDNAs encoding full length FilGAP (NM_001025616) and ARHGAP22 
(BC126444) were described previously [13,17]. cDNAs encoding ARHGAP22 
(wild-type, PH, GAP, CC, ΔPH, ΔGAP, ΔCC, R211A, 1-695) constructs were 
inserted into pCMV5-HA or pCMV5-FLAG vector. They were generated as follows; 
ARHGAP22 was digested with EcoRI and SphI to produce PH domain. The GAP 
domain of ARHGAP22 was generated by PCR. ARHGAP22 was digested with 
EcoRI and SalI to produce CC domain. ARHGAP22 cDNA lacking PH domain was 
generated by PCR. ARHGAP22 cDNA lacking GAP domain was generated by 
digesting full-length ARHGAP22 with XbaI and BamHI. ARHGAP22 lacking CC 
domain was generated by digesting with SmaI and self-ligation. ARHGAP22 cDNA 
lacking 696-714 aa was generated by PCR. Mutation of R211A of ARHGAP22 
construct was generated by introducing point mutations at nucleotide position 633 
and 632 of ARHGAP22 coding sequence using QuikChange site-directed 
mutagenesiss kit (Stratagene, La Jolla, CA). pcDNA3-EGFP-Rac1 Q61L was 
purchased from Addgene (plasmid ID 12981, Cambridge,MA).  
 
Cell culture and transfection 
    HEK293 cells and C2C12 cells were cultured in Dulbecco’s modified Eagle’s 
medium (DMEM, Sigma-Aldrich, St. Louis, MO) supplemented with 10 % (v/v) 
fetal bovine serum (FBS) and 50 U /ml penicillin / streptomycin at 37 °C. A7 human 
melanoma cells were cultured in Minimum essential Eagle’s medium (MEM, Sigma) 
supplemented with 2 % fetal bovine serum (FBS), 8 % newborn calf serum, 50 U/ml 
penicillin/ streptomycin and 50 mg/ml genticin at 37 °C. These cells were transfected 
with plasimid DNA for 24 h using Lipofectamine 2000 (Invitrogen, Carlsbad, CA), 2 
mg/ml Polyethylenimine, or siRNA for 48 h using Lipofectamine RNAimax 
(Invitrogen) according to the manufacture’s instructions.  
 
Immunoprecipitation 
    HEK293 cells were transfected with pCMV5-HA-ARHGAP22, 
pCMV5-FLAG-ARHGAP22, or both. After 24h, the cells were washed twice with 
10 ml of ice-cold Tris-buffered saline (TBS), suspended with 500 µl of lysis buffer  
containing (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 mM EDTA, and 0.1 %  
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NP-40) containing protease inhibitors and incubated on ice for 15 min with shaking. 
The cell lysates were pre-cleared and supernatant fluids were incubated for 1 h with 
anti-HA agarose beads (Sigma) at 4 °C. Then, the beads were washed three times 
with lysis buffer, suspended in 60 ml of 1 % SDS, boiled, and centrifuged. The 
supernatants were collected and subjected to SDS-PAGE. Bound-proteins were 
detected by immunet using anti-FLAG or anti-HA antibody. HEK293 cells were 
transfected with pCMV5-FLAG-ARHGAP22. After 24 h, the cells were washed 
twice with 10 ml of ice-cold PBS, suspended with 1 ml of TNE buffer containing (10 
mM Tris-HCl [pH 7.8], 25 mM NaCl, 0.1 mM EDTA, and 0.1% NP-40) containing 
protease inhibitors and incubated on ice 15 min with shaking. The cell lysates were 
pre-cleared and supermatamt fluids were incubated for 1 h with anti-FLAG M2 
agarose beads (Sigma) and 3 µg/ml FLAG-peptide in TNE buffer. The eluted 
samples were boiled for 5 min and then analyzed by silver stain kit (KANTO 
CHEMICAL).  
 
Chemical cross-linking with DSP (Dithiobis [succinimidyl propinate]) 
    HEK293 cells were transfected with pCMV5-FLAG-ARHGAP22. After 24 h, 
the cells were washed twice with 10 ml of Phosphate-buffered saline (PBS) and 
incubated with 1 mM DSP for 30 min at 25 °C. Then, the reaction was stopped by 
adding 20 mM Tris-HCl (pH 7.4) and incubated for 10 min. The cells were washed 
and suspended in 1 ml of lysis buffer (20 mM Tris-HCl [pH 7.5], 150 mM NaCl, 1 
mM EDTA, and 0.1 % NP-40) containing protease inhibitors, and incubated on ice 
for 15 min with shaking. The cells were homogenized and the cell lysates were 
prepared by centrifugation at 15,000 rpm for 10 min at 4 °C. The lysate samples were 
boiled for 5 min in the presence or absence of 0.72 M 2-mercaptoethanol and then 
analyzed by Western blot.  
 
Immunostaining 
    Cells were cultured on coverslips (poly-L-lysine coated) transfected with 
relevant plasmid. After 24 h, cells were washed once with PBS and fixed with 3.7 % 
formalehyde in PBS for 10 min. The fixed cells were then permeabilized with 0.5 % 
Triton-X-100 in PBS for 10 min, then incubated with blocking buffer (10 % blocking 
one [Nakarai Tesque, Kyoto, Japan] in PBS) for 30 min, and immunostained with 
primary antibodies in blocking buffer for 1 h. Cells were then washed and incubated  
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with Alexa Fluor dye-labeled secondary antibodyes (Invirtogen) in blocking buffer 
for 1 h. For visualizeation of F-actin and nuclei, cells were stained with Alexa Flour 
568 conjugated-phalloidin and Hoechst 33258, respectively, in PBS for 1h. After 
wash with PBS, cells were observed under an Olympus IX81 fluorescence 
microscope with a 10x, 20x, or 40x objective (Olympus, Tokyo, Japan). Images were 
acquired by a charge-coupled device camera (ORCA-ER; Hamamatsu photonics, 
hamamatsu, Japan) and analyzed by MetaMorph software (Molecular Dvices, 
Sunnyvale, CA). Quantification of Pearson’s Colocalization (PCC) was calculated by 
Colocalization finder for ImageJ (NIH). 
 
EGF stimulation 
    A7 cells were cultured on coverslips (poly-L-lysine coated) transfected with 
relevant plasmids for 5 h and serum-starved. The cells were fixed after the treatment 
with 50 nM EGF for 30 min. 
 
Spreading assay 
    A7 cells were cultured on 6 cm dish transfected with relevant plasmids for 5 h 
and serum-starved. After 20 h, the cells were trypsinized and suspended in MEM. 
The cells were plated on collagen-coated coverslips (50 µg/cm2) and fixed 20 min 
after plating. C2C12 cells were cultured on 6 cm dish treated with ARHGAP22 
siRNAs for 48 h and serum-starved. The cells were trypsinized and suspended in 
DMEM. The cells were plated on fibronectin-coated coverslips (10 µg/ml) and fixed 
at 10, 20, 30, and 40 min after plating. 
 
Transferrin uptake 
    A7 cells were cultured on coverslips (poly-L-lysine coated) transfected with 
HA-ARHGAP22. After 24 h, the cells were incubated in serum-free growth medium 
for 1 h. The cells were then incubated with 20 µg/ml Alexa Fluor 568-conjugated 
transferrin (Invitrogen) at 37 °C for 30 min and fixed immediately after incubation. 
 
Antibodies 
    Mouse anti-Myc (9E10), anti-FLAG (M2), anti-α-tubulin monocle antibodyes 
and rabbit anti-HA and anti-FLAG polyclonal antibodies were purchased from Sigma. 
Mouse anti-EEA1, anti-GM130, and anti-Rab11 monoclonal antibodies were  
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purchased from BD Biosciences (Bedford, MA). Rabbit anti-TGN46 polyclonal anti- 
body was purchased from Abcam (Cambridge, UK). Mouse anti-LAMP-1 
monoclonal and Rabbit anti-Rab5 polyclonal antibodies were purchased from Santa 
Cruz Biotechnology (Santa Cruz, CA). Mouse anti-HA (12CA5) and anti-FLNa 
monoclonal antibodies were purchased from Roche Applied Science (Indianapolis, 
IN) and Millipore (Billerica, MA), respectively. Secondary antibodies conjugated to 
Alexa Fluor 488 or 568, Alexa Fluor 568-phalloidin (Invitrogen), hoechst 33258 
(Dojido laboratories, Kumamoto, Japan) were also purchased from commercial 
sources. Rabbit anti-FilGAP polyclonal antibody was prepared as described 
previously [13]. Rabbit anti-ARHGAP22 polyclonal antibody was directed against 
amino acid residues 469–485 (RGHRRASSGDRLKDSGS) of human ARHGAP22. 
The peptide was coupled through cysteine at the NH2-terminal residue to keyhole 
limpet hemocyanin (KLH) and was used to raise the antiserum. The antiserum 
specific to ARHGAP22 was affinity-purified with the immobilized peptide.  
 
siRNA 
    siRNA oligonucleotide duplexes targeting human ARHGAP22 (BC126444) 
were purchased from Invitrogen. The targeting sequences were as follows: 
ARHGAP22, KD#1 5’-GAUACAUCUGCAAGUUUCUGGAUGA-3’ (nt 902–926) 
and KD#3 5’-GGAAAUAAAGCUGCGGAACUCUGAA-3’ (nt 2004–2028). For 
siRNA rescue assay, 5 silent mutations were introduced to the siRNA targeting 
sequence (nucleotides 902–926). The final mutant was changed into 
GG903TACATA909TGCAAA915TTC918CTGGAC924GA by PCR. The cells were 
treated with siRNA for 24 h followed by a transfection with rescue constructs. The 
cells were cultured for another 24 h and proceed for Western blot or spreading assay.  
 
Statistical analysis 
    The statistical significance was accessed by two-tailed unpaired Student’s t-test 
or Welch’s t-test. Differences were considered to be statistically significant at p value 
of <0.01. Error bars (s.e.m.) and p values were determined from results of at least 
three experiments.  
 
 
 



 8 

 

Result 
Part.1 ARHGAP22 suppresses lamellae formation 
 
    Previous study has shown by using RNA interference that ARHGAP22 is 
involved in regulating the switch between mesenchymal and amoeboid modes of cell 
migration in 3D environment [15]. Depletion of endogenous ARHGAP22 by RNAi 
increased GTP-bound Rac and increased the number of mesenchymal melanoma 
cells [15]. However, it is unclear where ARHGAP22 localizes in cells and how 
ARHGAP22 regulates actin cytoskeleton. Many growth factors such as EGF induce 
lamellae through activation of Rac [13]. Therefore, we investigated if ARHGAP22 
could function as a RacGAP and suppress lamellae formation induced by EGF.  
    A7 melanoma cells transfected with ARHGAP22 were stimulated with EGF (50 
nM) for 30 min and lamellae formation was analyzed by F-actin staining. More than 
90% of control cells produced lamellae (Figure 1A and C), but less than ~30% of 
cells produced lamellae when cells were transfected with ARHGAP22 (Figure 1B 
and C). On the other hand, neither ARHGAP22 lacking its GAP domain (amino 
acids 163–365; ΔGAP) nor GAP deficient ARHGAP22 (R211A) mutants [14] did 
not suppress EGF-induced lamellae formation (Figure 1B and C). The GAP-deficient 
mutants were still capable of inhibiting lamellae formation. The reason is unclear but 
overexpression of ARHGAP22 could inhibit lamellae formation through 
RacGAP-independent fashion. We found that ARHGAP22 is mainly localized at 
punctate structures inside the cells and does not appear to co-localize with actin 
filaments (Figure 1B and see below). Nonetheless, ARHGAP22 suppresses lamellae 
formation induced by EGF and its GAP activity is mainly responsible for lamellae 
suppression.  
    To confirm if ARHGAP22 functions as a RacGAP, a GST-fusion protein of 
ARHGAP22 encompassing amino acids 168–365 was prepared and its effect on the 
intrinsic GTPase-activity of Cdc42, Rac1, and RhoA was determined. The GAP 
domain of ARHGAP22 stimulated GTPase activity of both Cdc42 and Rac1 but not 
of RhoA (Figure 2A). Moreover, forced expression of ARHGAP22 effectively 
reduced the level of GTP-Rac1 but not GTP-Cdc42 and GTP-RhoA as determined by 
pull-down assay (Figure 2B). These results demonstrate that ARHGAP22 inactivates 
Rac1 and suppresses lamellae formation.  
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FIGURE 1-1.  RacGAP activety of ARHGAP22 suppresses lamellae formation. 
(A) EGF-induced lamellae formation. Serum-starved A7 cells were fixed 30 min 
after the treatment of the cells without (control) or with 50 nM EGF (+EGF) and 
stained with phalloidin for F-actin (red). The cells were also stained with hoechst 
33258 for nuclei (blue). Scale bar, 20 µm. (B) A7 cells were either not transfected  

Figure 1

A

B
La

m
el

la
 in

de
x 

(%
)

- EGF

+ EGF

Control WT ΔGAP R211A

**
**

Control

C

+E
G

F

**

0
10
20
30
40
50
60
70
80
90

100

F-actin Merge

+EGFControl

HA-ARHGAP22

C
on

tro
l

ΔGAP

R211A

+EGF

WT

WT

Figure 1

A

B

La
m

el
la

 in
de

x 
(%

)

- EGF

+ EGF

Control WT ΔGAP R211A

**
**

Control

C

+E
G

F

**

0
10
20
30
40
50
60
70
80
90

100

F-actin Merge

+EGFControl

HA-ARHGAP22

C
on

tro
l

ΔGAP

R211A

+EGF

WT

WT



 10 

 

 
(control) or transfected with ARHGAP22 constructs (WT, ΔGAP, or R211A) for 5 
hand serum-starved. The cells were fixed after treatment without (control) or with 50 
nM EGF (+EGF) for 30 min. Representative images of cells stained with anti-HA 
antibody for HA-ARHGAP22 (green) and phalloidin (red) are shown. Merged 
fluorescent images are shown. The cells were also stained with hoechst 33258 (blue). 
Scale bar, 20 µm. 
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FIGURE 1-2.  RacGAP activety of ARHGAP22 suppresses lamellae formation. 
(C) The percentages of lamellipod-positive cells (n=100) were calculated, and the 
data are expressed as the mean ± s.e.m. (N=3). **, p<0.01. Statistical significance 
was determined by Student’s t-test. 
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FIGURE 2.  ARHGAP22 inactivates Rac1.  (A) Recombinant Rac1, Cdc42, 
RhoA proteins were loaded with [γ32-P]GTP and incubated with (filled symbols) or 
without (open symbols) GST- ARHGAP22-GAP. The γ32-P-associated with GTPases 
was determined at various time points. The data are expressed as the mean of three 
independent experiments. *, p<0.05; **, p<0.01. Statistical significance was 
determined by Student’s t-test (vs. without GST-ARHGAP22-GAP at each time 
point). (B) HEK cells were transfected with HA-ARHGAP22. Cell lysates were 
incubated with GST-PAK1-CRIB for Rac1 and Cdc42 or GST- Rhotekin-RBD for 
RhoA that was immobilized on glutathione-Sepharose beads. The amount of Rho 
GTPases in cell lysates before pull-down and GTP-bound Rho GTPases was detected 
by immunoblotting using anti-Rac1, anti-Cdc42, or RhoA antibody. Asterisks 
indicate nonspecific bands.  
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Part.2 ARHGAP22 does not interact with FLNa 
 
    As shown in Figure 3A, FilGAP, a close relative of ARHGAP22, localizes at 
lamellae with FLNa in A7 cells stimulated by EGF. On the other hand, ARHGAP22 
localizes at punctate structures at the cytoplasm and does not co-localize with FLNa 
at lamellae (Figure 3A). We therefore determined if ARHGAP22 binds to FLNa. 
HEK cells were transfected with HA-tagged full length ARHGAP22 or HA-FilGAP 
and the proteins were immunoprecipitated from the cell lysates. Although FLNa was 
co-precipitated with HA-FilGAP, ARHGAP22 failed to precipitate FLNa (Figure 
3B). We showed that the C-terminal Repeat 23–24 of FLNa mediates a stable 
complex with FilGAP [13]. A recombinant GST-Repeats 23–24 construct exhibited 
strong FilGAP binding activity but the repeats did not bind to ARHGAP22 (Figure 
3C). The C-terminal region of ARHGAP22 contains CC domain similar to FilGAP 
and has FLNa-binding motif [14,20]. However, ARHGAP22 does not bind to FLNa 
in vitro and in vivo (Figure 3B and C). The high-affinity binding of FilGAP to FLNa 
is dependent on the dimerization of FilGAP [20]. Therefore, we investigated if 
ARHGAP22 can dimerize in vivo. To investigate whether ARHGAP22 can dimerize 
in cells similar to FilGAP, we transfected HEK cells with HA-ARHGAP22 and 
FLAG-ARHGAP22. HA-ARHGAP22 was immunoprecipitated from cell extracts 
using anti-HA agarose. The immunoprecipitate was separated by SDS-PAGE and 
immunoblotted for the presence of FLAG- and HA-ARHGAP22 (Figure 3D). 
Although HA-ARHGAP22 was detectable in the immunoprecipitate as expected, 
little FLAG-ARHGAP22 was included in the HA-ARHGAP22 immunoprecipitate. 
On the other hand, FLAG-FilGAP was readily detectable in the HA-FilGAP 
immunoprecipitate, which was precipitated from co-transfected HEK cells. These 
results suggest that FilGAP can oligomerize in vivo, but ARHGAP22 does not. We 
further analyzed if ARHGAP22 could dimerize in vivo by using chemical 
cross-linker DSP (Dithiobis [Succinimidyl propionate]) (Figure 3E). HEK cells 
transfected with HA-FilGAP were treated with DSP and cell lysates were subjected 
to SDS-PAGE followed by Western blot for FilGAP. Molecular mass of ~240 kDa 
was detected in the presence of DSP. This suggests that FilGAP is present as a 
multimer in cells. On the other hand, when HA-ARHGAP22 was transfected in HEK 
cells and treated with DSP, only single band ~80 kDa was detected and formation of 
multimer was not detected. These results strongly suggest that ARHGAP22 may  
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present as a monomer in vivo.  
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FIGURE 3-1.  ARHGAP22 does not interact with FLNa. (A) A7 cells were 
transfected with FLAG-ARHGAP22 or FLAG-FilGAP. After 24 h, cells were fixed 
and ARHGAP22 and FilGAP (green) or FLNa (red) was localized by staining the 
cells with anti-FLAG and anti-FLNa antibodies. Merged fluorescent images are 
shown. The cells were also stained with hoechst 33258 for nuclei (blue). Scale bar, 
20 µm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 



 17 

 

 

 

 

 

 

 

 

 

 
 
 
 
FIGURE 3-2.  ARHGAP22 does not interact with FLNa.  (C) HEK cells were 
transfected with HA-ARHGAP22 or HA-FilGAP. Cell extracts were prepared and 
then incubated with GST-FLNa-Repeat 23–24 or GST alone, and precipitated with 
glutathione-Sepharose beads. Bound proteins were analyzed by immunoblot using 
anti-HA antibody. Asterisks indicate non-specific bands. (D) HEK cells were 
transfected with HA-FilGAP (or HA-ARHGAP22) in the presence or absence of 
FLAG-FilGAP (or FLAG-ARHGAP22). Then, HA-FilGAP (or HA-ARHGAP22) 
was immunoprecipitated from cell extracts using anti-HA agarose, and bound 
proteins were identified by immunoblot using anti-HA and anti-FLAG antibodies. 
Asterisk indicates a non-specific band. (E) HEK cells were transfected with 
HA-ARHGAP22 or HA-FilGAP. The cells were lysed after treatment with indicated 
concentrations of DSP, boiled with 1% SDS in the absence or presence of 
2-mercaptoethanol (2ME) and analyzed by immunoblot using anti-ARHGAP22 or 
anti-FilGAP antibody. 
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Part.3 Identification of domains mediating subcellular localization of 
ARHGAP22 
 
    We delineated respective domains of ARHGAP22 mediating its punctate 
subcellular localization. We have generated HA-tagged ARHGAP22 constructs 
(Figure 4A and B), and expressed them in A7 cells. We found that the C-terminal CC 
domain of ARHGAP22 alone localizes at subcellular punctate structures (Figure 4C). 
On the other hand, the N-terminal PH domain or GAP domain localizes diffusely in 
the cell. Moreover, all the ARHGAP22 constructs lacking CC domain failed to 
localize at punctate structures (Figure 4C). These findings indicate that the CC 
domain of ARHGAP22 is essential for targeting of ARHGAP22 to punctate 
structures. Interestingly, we found that ARHGAP22 mutant lacking CC domain 
(ΔCC) is predominantly localized in nucleus (Figure 4C).  
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FIGURE 4-1.  Subcellular distribution of ARHGAP22. (A) Schematic diagram 
of HA-ARHGAP22 constructs. (B) Ectopic expression of HA-ARHGAP22 
constructs. HEK cells were transfected with HA-ARHGAP22 constructs. 
HA-ARHGAP22 proteins were analyzed by immunoblot using anti-HA antibody. 
Tubulin was used as a loading control.  
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FIGURE 4-2.  Subcellular distribution of ARHGAP22. (C) A7 cells were 
transfected with HA-ARHGAP22 constructs. After 24 h, the cells were fixed and 
stained with anti-HA (green) and anti-FLNa (red) antibodies. Merged fluorescent 
images are shown. The cells were also stained with hoechst 33258 for nuclei (blue). 
Scale bar, 20 µm.  
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Part.4 ARHGAP22 localizes at endosomes 
 
    To investigate if the punctate structures correspond to any particular organelles 
in cells, we compared the localization of ARHGAP22 in cells with various organelle 
markers including: early endosome (anti-EEA1 and anti-Rab5 antibodies), recycling 
endosome (anti-Rab11 antibody; RE), lysosome (anti-LAMP-1 antibody), Golgi 
apparatus (anti-GM130 antibody), and trans- Golgi network (anti-TGN46 antibody). 
We found that punctate structures induced by HA-ARHGAP22 contain endocytic 
markers EEA1, Rab11, and Rab5 in A7 cells (Figure 5A). Forced expression of 
HA-ARHGAP22 in mouse myoblast C2C12 cells induced enlarged vesicular 
structures that also contained Rab11 and Rab5 (Figure 5B). We found that the CC 
domain of ARHGAP22 alone is sufficient to localize at Rab11-positive structures 
(Figure 6A). The ARHGAP22 mutant lacking PH domain (ΔPH) showed perinuclear 
localization (Figure 4C). However, the perinuclear structures still contain Rab11 but 
do not contain Golgi apparatus marker GM130 (Figure 6B). Therefore, the CC 
domain of ARHGAP22 may mediate targeting to vesicle structures that contain 
endosome markers.  
    To determine the subcellular localization of endogenous ARHGAP22 in 
mammalian cells, we have prepared rabbit polyclonal antibody directed against 
amino acid residues 469–485 (RGHRRASSGDRLKDSGS) of human ARHGAP22. 
The antibody recognized ARHGAP22 but not other family members FilGAP 
(ARHGAP24) and ARHGAP25 (Figure 7A). The anti-ARHGAP22 antibody also 
recognized HA-ARHGAP22 protein, which was overexpressed in A7 cells (Figure 
7B). By using this antibody, we have analyzed endogenous ARHGAP22 expression 
in various cell types. Among cell lines tested, we found that mouse C2C12 myoblasts 
express endogenous ARHGAP22 protein [18]. We therefore determined localization 
of endogenous ARHGAP22 in C2C12 cells. We found that endogenous ARHGAP22 
is localized at punctate structures, which are partly overlapped with Rab11-positive 
endosomes in C2C12 cells (Figure 8A). Moreover, co-localization of endogenous 
ARHGAP22 and Rab11 was diminished when the primary antibody was 
pre-absorbed with the cell lysates expressing HA-ARHGAP22 (Figure 8A). The 
punctate staining also disappeared after depletion of endogenous ARHGAP22 by 
siRNA treatment (Figure 8B). The endogenous ARHGAP22 is also partly 
co-localized with EEA1-positive endosomes but not with trans-Golgi marker TNG46  
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(Figure 8C and D). Thus, at least in part, endogenous ARHGAP22 seems to localize 
at Rab11- and EEA1-positive endosomes in C2C12 cells.  
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FIGURE 5-1.  Co-localization of ARHGAP22 with endocytic markers. (A) A7 
cells were transfected with HA-ARHGAP22. After 24 h, the cells were fixed and 
stained with anti-HA antibody for HA-ARHGAP22 (green) and antibodies for Rab11, 
Rab5, EEA1, LAMP-1, GM130, or TGN46 (red). Merged fluorescent images are 
shown. The cells were also stained with hoechst 33258 for nuclei (blue). Scale bar, 
20 µm. Insets show magnification images of the boxed regions.  
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FIGURE 5-2.  Co-localization of ARHGAP22 with endocytic markers. (B) 
C2C12 cells were transfected with HA-ARHGAP22. After 24 h, the cells were fixed 
and stained with anti-HA antibody for HA-ARHGAP22 (green) and antibodies for 
Rab11 or Rab5 (green). Merged fluorescent images are shown. The cells were also 
stained with hoechst 33258 (blue). Scale bar, 20 µm. Insets show magnification 
images of the boxed regions.  
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FIGURE 6.  Coiled-coil domain of ARHGAP22 is responsible for targeting to 
Rab11-positive vesicle structures. (A) A7 cells were transfected with HA-tagged 
coiled-coil (CC) domain of ARHGAP22 (HA-ARHGAP22CC). After 24 h, the cells 
were fixed and stained with anti-HA antibody for HA-ARHGAP22CC (green) and 
anti-Rab11 antibody (red). Merged fluorescent image is shown. The cells were also 
stained with hoechst 33258 for nuclei (blue). Scale bar, 20 µm. Inset shows 
magnification image of the boxed region. (B) A7 cells were transfected with 
HA-ARHGAP22ΔPH. After 24 h, the cells were fixed and stained with anti-HA for 
HA-ARHGAP22ΔPH (green) and antibodies for GM130 or Rab11 (red). Merge 
fluorescent images are shown. The cells were also stained with hoechst 33258 (blue). 
Scale bar, 20 µm. Insets show magnification images of the boxed regions.  
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FIGURE 7.  Production of antibodies against ARHGAP22. (A) Specificity of 
anti-ARHGAP22 antibody was shown by immunoblotting from HEK293 cells 
transfected with a control plasmid (pCMV5-HA) or pCMV5-HA plasmids encoding 
human FilGAP, ARHGAP22, or ARHGAP25. The HA-epitope and tubulin (loading 
control) were also detected by immunoblotting using anti-HA and anti-tubulin 
antibodies, respectively. Arrowheads and asterisks indicate HA-tagged proteins and 
non-specific bands, respectively. (B) A7 cells were transfected with HA-ARHGAP22. 
After 24 h, the cells were fixed and stained with anti-ARHGAP22 (green) and 
anti-Rab11 (red) antibodies. Merged fluorescent image is shown. The cells were also 
stained with hoechst 33258 for nuclei (blue). Scale bar, 20 µm.  
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FIGURE 8-1.  Localization of endogenous ARHGAP22 in C2C12 cells. (A) 
C2C12 cells were fixed and stained with anti-ARHGAP22 (green) or anti-Rab11 
(red) antibodies, which was non-treated (control) or preabsorbed with lysates from 
non-transfected (-) or HA-ARHGAP22-transfected (+) HEK cells. Merged 
fluorescent images are shown. The cells were also stained with hoechst 33258 for  
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nuclei (blue). Scale bar, 20 µm. Inset shows a magnification image of the boxed 
region. (B) C2C12 cells were treated with control or ARHGAP22 siRNAs for 48 h 
and serum-starved. The cells were fixed and stained with anti-ARHGAP22 (green) 
and anti-Rab11 (red) antibodies. Merged fluorescent images are shown. The cells 
were also stained with hoechst 33258 (blue). Scale bar, 20 µm.  
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FIGURE 8-2.  Localization of endogenous ARHGAP22 in C2C12 cells. (C) 
C2C12 cells were fixed and stained with anti-ARHGAP22 antibody (green) and 
antibodies for TGN46 or EEA1 (red). Merged fluorescent images are shown. The 
cells were also stained with hoechst 33258 (blue). Scale bar, 20 µm. (D) Pearson’s 
Colocalization Coefficient (PCC) was calculated by ImageJ (NIH). The data are 
expressed as the mean±s.e.m. (N=3). Ten cells were analyzed for each experiment. 
**, p<0.01. Statistical significance was determined by Student’s t-test.  
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Part.5 ARHGAP22 suppresses integrin-mediated cell spreading 
 
    A7 cells that were plated on collagen-coated dishes adhered within 20 min and 
then spread circumferentially. Transfection of full-length ARHGAP22 abolished 
spreading, but ARHGAP22ΔGAP and R211A mutants enhanced initial cell 
spreading (Figure 9A and B), which is consistent with the finding that activation of 
Rac and Cdc42 by integrin mediates cell spreading [21].  
    The CC domain of ARHGAP22 mediates targeting of ARHGAP22 to punctate 
structures (Figure 4 and 6A). Therefore, we have examined if targeting of 
ARHGAP22 to punctate structures has any role in the control of cell spreading. 
Forced expression of mutant ARHGAP22 lacking CC domain (ΔCC) failed to 
suppress cell spreading on collagen. Thus, localization of ARHGAP22 at punctate 
structures is critical for suppression of cell spreading.  
    To explore the role of endogenous ARHGAP22 in cell spreading, we have 
transfected C2C12 mouse myoblast cells with small interference RNAs (siRNAs) 
targeting ARHGAP22 and spreading on fibronectin was analyzed by F-actin staining. 
Two-independent siRNAs targeting ARHGAP22 (KD#1 and KD#3) reduced the 
expression of endogenous ARHGAP22 in C2C12 cells (Figure 10A), and depletion 
of ARHGAP22 by these siRNAs promoted much more rapid spreading (Figure 10B 
and C). The spread area that was occupied by ARHGAP22 RNAi-silenced cells is 
much bigger than that of control cells 10 min after spreading (Figure 10D).  
    We introduced 5 silent mutations into the siRNA-targeting sequence of 
ARHGAP22 (KDr) and examined if the spreading on fibronectin that was induced by 
ARHGAP22 siRNA could be prevented by KDr. After two days treatment with 
ARHGAP22 siRNA, control HA-ARHGAP22 protein was significantly depleted, 
whereas KDr protein was abundant (Figure 10E). C2C12 cells expressing KDr did not 
spread on fibronectin in the presence of ARHGAP22 siRNA (Figure 10F).  
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FIGURE 9-1.  ARHGAP22 suppresses cell spreading. (A) A7 cells were 
transfected with HA-ARHGAP22 constructs (WT, ΔGAP, R211A, or ΔCC,) and 
serum-starved for 20 h. Quiescent cells were trypsinized and then plated on 
collagen-coated coverslips and fixed 20 min after plating. The cells were stained with 
anti-HA antibody for HA-ARHGAP22 (green) and phalloidin for F-actin (red). 
Merged fluorescent images are shown. The cells were also stained with hoechst 
33258 for nuclei (blue). Arrowheads indicate the transfected cells. Scale bar, 20 µm. 
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FIGURE 9-2.  ARHGAP22 suppresses cell spreading. (B) The surface area of 
spreading cells (n=100) 20 min after plating were calculated and shown as box and 
whisker plots. **, p<0.01. Statistical significance was determined by Welch’s t-test.  
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Figure 10-1.  Depletion of ARHGAP22 stimulates cell spreading on fibronectin. 
(A) Immunoblot showing that ARHGAP22 is depleted after 48 h of siRNA treatment 
of C2C12 cells. ARHGAP22 and tubulin were detected by immunoblot using 
anti-ARHGAP22 and anti-tubulin antibodies, respectively. (B) C2C12 cells were 
treated with control or ARHGAP22 siRNAs for 48 h and serum-starved. The cells  
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were trypsinized and then plated on fibronectin-coated coverslips and fixed at 10, 20, 
30, and 40 min after plating. The cells were stained with phalloidin for F-actin. Scale 
bar, 20 µm.  
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Figure 10-2.  Depletion of ARHGAP22 stimulates cell spreading on fibronectin. 
(C) The percentage of spread cells (n=200) were calculated and plotted as the mean 
± s.e.m. (N=3). (D) The surface area of spreading cells (n=100) 10 min after plating 
was calculated and shown as box and whisker plots. **, p<0.01. Statistical 
significance was determined by Welch’s t-test.  
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Figure 10-3.  Depletion of ARHGAP22 stimulates cell spreading on fibronectin. 
(E) HEK cells were treated with control or ARHGAP22 siRNA for 24 h followed by 
transfection with HA-tagged ARHGAP22 constructs. The cells were cultured for 
another 24 h. ARHGAP22 and tubulin were analyzed by immunoblot using anti-HA 
and anti-tubulin antibodies, respectively. (F) C2C12 cells were treated with control 
or ARHGAP22 siRNA KD#1 for 24 h followed by a transfection with rescue 
constructs (KDr). The cells were cultured for another 24 h and serum-starved. The 
cells were fixed and stained with anti-HA antibody for HA-KDr (green) and 
phalloidin (red). Merged fluorescent images are shown. The cells were also stained 
with hoechst 33258 for nuclei (blue). Scale bar, 20 µm.  
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Part.6 ARHGAP22 co-localizes with constitutively activated Rac at 
the plasma membrane  
 
    To determine if ARHGAP22 could function as a GAP for Rac in cells, we 
co-expressed ARHGAP22 and constitutively activated mutant Rac (Q61L) in A7 
cells. When constitutively activated Rac Q61L mutant was expressed, ARHGAP22 
concentrated in sites of membrane ruffles and co-localized with Rac Q61L mutant 
(Figure 11A). Thus, ARHGAP22 could bind to and inactivate Rac at the cell surface 
although it localizes to the punctate structures in the absence of activated Rac (Figure 
5). Targeting of ARHGAP22 to activated Rac at the plasma membrane requires its 
GAP domain. The GAP deficient ARHGAP22 R211A mutant co-localizes with 
constitutively activated Rac at the plasma membrane whereas ARHGAP22 mutant 
lacking its GAP domain (ΔGAP) failed to translocate to the plasma membrane and 
co-localize with activated Rac Q61L. Thus, GAP domain seems to be a predominant 
site for interaction with Rac. Forced expression of another constitutively activated 
Rac G12V mutant induced membrane ruffling and ARHGAP22 was translocated to 
the ruffles (Figure 11B). On the other hand, translocation of ARHGAP22 to the 
plasma membrane did not occur when activated mutants of Cdc42 G12V or RhoA 
G14V were transfected with HA-ARHGAP22 (Figure 11B). Similarly, we examined 
the role of endogenous ARHGAP22 when constituteively activated Rac Q61L 
mutant expressed. Endogenous ARHGAP22 accumulated at the site of membrane 
ruffles and co-localized with Rac Q61L mutant as expected. (Figure 11 C).  
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FIGURE 11-1.  ARHGAP22 co-localizes with constitutively activated Rac at 
the plasma membrane. (A) A7 cells were transfected with HA-ARHGAP22 
constructs (WT, R211A, or ΔGAP) and constitutively activated Rac mutant 
(EGFP-Rac1 Q61L). After 24 h, the cells were fixed and stained with anti-HA for 
HA-ARHGAP22 (red). The GFP signal for Rac Q61L (green) was observed in the 
fixed cells. Merged fluorescent images are shown. The cells were also stained with 
hoechst 33258 for nuclei (blue). Scale bar, 20 µm. Insets show magnification images 
of the boxed regions.  
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FIGURE 11-2.  ARHGAP22 co-localizes with constitutively activated Rac at 
the plasma membrane. (B) A7 cells were transfected with HA-ARHGAP22 and 
constitutively activated Rac (Myc-Rac G12V), Cdc42 (FLAG-Cdc42 G12V), or 
RhoA (Myc-RhoA G14V) mutants. After 24 h, the cells were fixed and stained with 
anti-HA (green) and antibodies for Myc or FLAG (red). Merged fluorescent images 
are shown. The cells were also stained with hoechst 33258 (blue). Scale bar, 20 µm. 
Inset shows magnification image of the boxed region.  
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FIGURE 11-3.  ARHGAP22 co-localizes with constitutively activated Rac at 
the plasma membrane. (C) C2C12 cells were transfected with constituteively 
activated Rac mutant (EGFP-Rac1 Q61L). After 24 h, the cells were fixed and 
stained with anti-ARHGAP22 (red). The GFP signal for Rac Q61L (green) was 
observed in the fixed cells. Merged fluorescent images are shown. Scale bar, 20 µm. 
Insets show magnification images of the boxed regions.  
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Part.7 ARHGAP22 did not affect transferrin receptor-mediated 
endocytosis  
 
    Forced expression of ARHGAP22 induced enlarged vesicles that contain 
endocytic markers Rab11 and Rab5. Therefore, we examined if ARHGAP22 affects 
receptor-mediated endocytosis using transferrin. After incubation of A7 cells with 
Alexa Fluor 568-transferrin for 30 min, Alexa Fluor 568-transferrin was endocytosed 
and partially co-localized with recycling endosome marker Rab11 (Figure 12A). 
Forced expression of ARHGAP22 induced enlarged vesicles but did not affect 
incorporation of Alexa Fluor 568-transferrin (Figure 12A and B). The internalized 
transferrin did not accumulate at the enlarged vesicles (Figure 12A).  
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FIGURE 12.  Forced expression of ARHGAP22 does not affect endocytic 
trafficking of transferrin. (A) A7 cells were either not transfected (control) or 
transfected with HA-ARHGAP22. After 24 h, the cells were incubated in serum-free 
growth medium for 1 h. The cells were then incubated with 20 µg/ml Alexa Fluor 
568-transferrin at 37uC for 30 min and fixed immediately after incubation. Cells 
were stained with antibodies for Rab11 or HA-ARHGAP22 (green). Internalized 
transferrin signals (red) were detected in the fixed cells. Merged fluorescent images 
are shown. The cells were also stained with hoechst 33258 for nuclei (blue). Scale  
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bar, 20 µm. (B) Quantification of the internalized transferrin signal. The transferrin 
intensity was calculated as fluorescence intensity of Alexa Fluor 568-transferrin per 
cell divided by the surface area of this cell. The fluorescence intensity and cell area 
were measured by ImageJ (NIH), and the data are expressed as the mean ± s.e.m. 
(n=50 cells). Statistical significance was determined by Student’s t-test.  
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Discussion 
 
    In this study, we showed that ARHGAP22 localizes at punctate vesicular 
structures that contain endocytic markers, and regulates actin cytoskeleton to 
suppress lamella formation and cell spreading on ECMs.  
    Although ARHGAP22 has similar domain structure to that of FilGAP, FilGAP 
localizes along actin filaments and concentrates at lamellae whereas ARHGAP22 
primarily localizes at punctate structures that contain endosome markers [13,22,23]. 
Localization of FilGAP at lamellae is mediated by its binding to F-actin cross- 
linking protein FLNa [13]. FilGAP binds to FLNa through its CC domain. 
Localization of ARHGAP22 at punctate structures is also dependent on its CC 
domain. However, we could not detect the binding of ARHGAP22 to FLNa. 
ARHGAP22 contains consensus sequence for FLNa binding at its CC domain [14]. It 
has been shown that high affinity binding of FilGAP to FLNa is dependent on 
dimerization of FilGAP [20]. FLNa is also present as dimer in cells and binding 
affinity of FilGAP/FLNa interaction is high due to their dimerization [20]. Our study 
showed that ARHGAP22 seems to present as a monomer in cells. Thus, dimerization 
of ARHGAP22 may be required for its interaction with FLNa. It is unclear how 
ARHGAP22 is targeted to vesicular structures. ARHGAP22 has been shown to 
interact with several factors. For example, short isoform of ARHGAP22 lacking PH 
domain (p68RacGAP) binds to transcriptional factor Vezf1 and association induces 
translocation into nucleus [24]. In neuron, ARHGAP22 (RhoGAP2) is localized to 
excitatory synapses, and its C-terminal tail interacts with the TIR domain of 
IL1RAPL1 [25]. Both Vezf1 and IL1RAPL1 are reported to interact with the 
C-terminus of ARHGAP22. However, they do not seem to be responsible for 
targeting ARHGAP22 into punctate structures. ARHGAP22 also interacts with b 
isoform of 14-3-3 [18]. It has been shown that 14-3-3ζ ortholog (PAR-5) plays a 
role in Rab11-positive recycling endosome positioning and apicobasal cell polarity 
[26]. However, PH domain of ARHGAP22 has been shown to interact with 14-3-3 
[19] and our study demonstrates that CC domain of ARHGAP22 is responsible and 
sufficient for targeting to Rab11- positive vesicular structures. It is likely, therefore, 
that the binding of CC domain of ARHGAP22 to punctate structures is mediated by 
as yet unidentified factors.  
    Although wild-type ARHGAP22 is mainly localized at vesicular structures, 
mutant ARHGAP22 lacking CC domain is exclusively localized in nucleus.  
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ARHGAP22 isoform lacking PH domain (p68RacGAP) is also localized in the 
nucleus when co-expressed with transcription factor Vezf1 [24]. We showed in this 
study that ARHGAP22 mutant lacking PH domain is localized at perinuclear 
structures but not in the nucleus. It remains to be determined if ARHGAP22 could 
function in the nucleus.  
    Our study suggests that ARHGAP22 may localize at endosomes. First, enlarged 
vesicles induced by overexpression of ARHGAP22 contain endosome markers 
(EEA1, Rab5, and Rab11) but not other markers corresponding to Golgi (GM130), 
lysosome (LAMP-1), and trans-Golgi network (TGN46). Moreover, endogenous 
ARHGAP22 is present as punctate structures in C2C12 cells and they are partially 
co-localized with endosome markers (Rab11 and EEA1) but not with trans-Golgi 
network marker (TGN46). Forced expression of constitutively activated Rab mutants 
(Rab5 Q79L or Rab22 Q64L) [27-31] and depletion of Rab7 [32] also induced 
enlarged endosomes. Therefore, it is possible that ARHGAP22 may affect Rab- 
dependent endocytic processes through its CC-domain.  
    Recent studies have shown that membrane trafficking of Rho GTPases plays 
critical roles in the regulation of cell migration [33,34]. Rac is endocytosed by Rab5 
and activated by RacGEF Tiam1 at the early endosome and recycled back to the 
plasma membrane through Arf6-dependent pathway [35]. Cdc42 is also activated by 
αPIX at the early endosome and transported to leading edge by Arf6 to regulate cell 
polarization [29]. It is therefore possible that ARHGAP22 could function as a 
RacGAP at endosomes. We showed that forced expression of ARHGAP22 induced 
co-localization with activated Rac at the plasma membrane. However, little activated 
Rac was co-localized with ARHGAP22 at endosomes. It is likely that ARHGAP22 
may be reserved at endosomes and translocated to the plasma membrane to down- 
regulate activated Rac.  
    Although forced expression of ARHGAP22 induced enlarged vesicles in A7 
cells, ARHGAP22 did not change the distribution of endocytosed transferrin. The 
internalized transferrin did not accumulate at the enlarged vesicles induced by 
ARHGAP22. This is in contrast to Rab5 Q79L- and Rab22-induced vesicles that 
were accessible to internalized transferrin [29,31]. Therefore, ARHGAP22 does not 
seem to have dramatic effects on membrane trafficking. However, regulation of 
endocytosis and trafficking is receptor-dependent and also relies on experimental 
conditions. Some studies have reported unaffected recycling of transferrin receptor  
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by Rab5 Q79L [30], while others reported defects in recycling [27]. Rab5 Q79L has 
been shown to affect EGF receptor recycling [29, 30]. Rab22 has been shown to 
induce enlargement of early endocytic compartments and recycling of transferrin 
from Rab22-positive enlarged compartments was blocked [31]. It is well documented 
that Rab-regulated endocytosis and trafficking of membrane receptors and adhesion 
molecules are critically involved in the control of cell migration [38,39,40,41]. 
Further study is required to determine if ARHGAP22 could regulate endocytic 
pathways of specific membrane receptors and adhesion molecules that are involved 
in cell migration.  
    Our present study showed that ARHGAP22 suppresses lamellae formation and 
cell spreading on ECMs such as fibronectin and collagen. Therefore, ARHGAP22 
could regulate actin cytoskeleton in a similar way conducted by FilGAP. Moreover, 
both FilGAP and ARHGAP22 have been shown to mediate the antagonism between 
RhoA and Rac1 and AMT (amoeboid-to-mesenchymal transition) in 3D environment 
[15,17,42]. We previously showed that FilGAP specifically inactivates Rac through 
Rho/ROCK-mediated phosphorylation of FilGAP [13,42,43]. It has been shown that 
depletion of ARHGAP22 inhibited Rho-mediated inactivation of Rac1 and activation 
of ARHGAP22 is dependent on ROCK/myosin activity [15]. However, it is unclear 
how ROCK/myosin activity regulates ARHGAP22 at the molecular level. Moreover, 
our present study demonstrated that cellular localization of ARHGAP22 is 
completely different from that of FilGAP. ARHGAP22 localizes at endosomes 
whereas FilGAP is targeted to lamellae. Further study is required to understand how 
ARHGAP22 is regulated to inactivate Rac downstream of RhoA.  
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FIGURE 13.  Diagram outlining the ARHGAP22 function relevant to cell 
morphology. 
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